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ABSTRACT 

Projects are essential for organizations to transform strategies into results, but uncertain events can impose 

risks to achieve a certain objective. Risk management aims to support an organization in deciding how to 

deal with risks, prioritizing them through the application of Risk Matrices (RMs). RMs or Probability and 

Impact Matrices is used to support decision-making, helping management to classify and prioritize risks to 

decide which will be ad-dressed, monitored, or tolerated. RMs are supposedly easy to build and explain, 

but according to the literature they may contain uncertainties. To deal with uncertainty, it is recommended 

to apply a Fuzzy Inference System, based on Fuzzy Set Theory (FST) or a Fuzzy Neural Inference System 

with the presence of an artificial neural network. Thus, the aim of this paper was to develop and apply a 

Fuzzy Inference System (FIS) and a Fuzzy Neural Inference System (FNIS) in the classification of MRs in 

projects to reduce uncertainty. The analysis of the results indicated that the application of the two systems 

resulted in a continuous classification rule by smoothing the boundary areas between each of the RM 

classes, reducing uncertainty and improving risk classification. Both systems showed good results in 

reducing uncertainty. However, the results obtained with FNIS were more consistent. The main contribution 
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of this work lies in the possibility of improving the decision making by reducing the uncertainty present in 

RMs. 

Keywords: Risk Matrices; Projects Risk; Risk Classification; Fuzzy Inference System; Fuzzy Neural 

Inference System 

 

RESUMO 

Projetos são essenciais para que as organizações transformem estratégias em resultados, mas eventos 

incertos podem impor riscos para atingir determinado objetivo. A gestão de riscos visa apoiar uma 

organização na decisão de como lidar com os riscos, priorizando-os por meio da aplicação de Matrizes de 

Risco (MRs). MRs ou Matrizes de Probabilidade e Impacto são usados para apoiar a tomada de decisões, 

ajudando a gestão a classificar e priorizar os riscos para decidir quais serão abordados, monitorados ou 

tolerados. MRs são supostamente fáceis de construir e explicar, mas de acordo com a literatura eles podem 

conter incertezas. Para lidar com a incerteza, recomenda-se a aplicação de um Sistema de Inferência Fuzzy, 

baseado na Teoria dos Conjuntos Fuzzy (TCF) ou um Sistema de Inferência Neural Fuzzy com a presença 

de uma rede neural artificial. Assim, o objetivo deste trabalho foi desenvolver e aplicar um Sistema de 

Inferência Fuzzy (SIF) e um Sistema de Inferência Neural Fuzzy (SINF) na classificação de MRs em 

projetos, para reduzir a incerteza. A análise dos resultados indicou que a aplicação dos dois sistemas 

resultou em uma regra de classificação contínua ao suavizar as áreas de fronteira entre cada uma das classes 

de MR, reduzindo a incerteza e melhorando a classificação de risco. Ambos os sistemas apresentaram bons 

resultados na redução da incerteza. No entanto, os resultados obtidos com SINF foram mais consistentes. 

A principal contribuição deste trabalho reside na possibilidade de melhorar a tomada de decisão reduzindo 

a incerteza presente nos MRs. 

Palavras-chave: Matrizes de Risco; Risco de Projetos; Classificação de Risco; Sistema de Inferência 

Fuzzy; Sistema de Inferência Neural Fuzzy 

 

 

 

INTRODUÇÃO 

 

The use of Artificial Intelligence (AI) in operations management represents a significant 

field of research. AI’s ability to evolve solutions, address uncertainty, and perform optimization 

contributes to mitigating new challenges faced by operations management Baruah and Kakati, 

2020). In this context, improving project management remains a primary concern of researchers 

and managers. Project managers face a variety of difficulties in managing projects, including 

project life cycle, external dynamic environment, management process complexity, uncertainties, 

costs, and risks of projects (Kerzner, 2013; Liu, 2015). 

Risk management in project management is widely recognized as necessary to deal with 

project uncertainty. Due to its importance in the literature on project risk management. Risks are 

events which may affect the success of a project. Risks have two dimensions: the degree of 

uncertainty and impact on objectives (Hillson, 2009; Creemers, et al., 2014; Qazi, et al. 2016). 

Projects are characterized by being subject to risks, on the other hand, they are also 

essential to implement organizational strategies, as an important piece to companies’ growth. 
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Thus, decisions on how to deal with project risks are key to the success of businesses (Knezevic 

et al., 2018; Gonçalves, et al., 2023). 

Considering the two dimensions of risk, the probability and the impact, probability is 

generally used to describe the degree of uncertainty of events, while impact is most often used to 

describe the effect on the objectives of the project (Wideman, 1992; Montibeller, Winterfeldt, 

2015). 

The combination of the different degrees of intensity of these two dimensions allows to 

classify each risk on a qualitative scale as high, medium, or low. Thus, the higher the risk, the 

greater the urgency to address it, or the greater the resources required to mitigate it (Ball, Watt, 

2013).  

Risk management is characterized by a sequence of activities that begins with planning, 

followed by risk identification, qualitative and quantitative analysis, monitoring and control 

(Project Management Institute, 2017). 

Risk Matrices (RMs) or Probability and Impact Matrices is used to support decision-

making, helping management to classify and prioritize risks to decide which will be addressed, 

monitored, or tolerated (Cox, 2008).  

The studies of Cox (2008), Ni, et al. (2010), Markowkski and Mannan (2008), Duijim 

(2015) and Jordan, et al., (2018) have shown that RM is widely applied, but it also has certain 

weaknesses, especially when the situation to be considered is not clear due to uncertainties arising 

from limited knowledge or lack of information. 

RM displays the aggregated notion of risk through a graph, representing two dimensions, 

probability and impact organized into discrete categories, which can be described in IF-THEN 

rules (Markowski, Mannan, 2008). 

RM allows the visualization of the two dimensions of risk, probability and impact, 

enabling communication between project team members and establishing a standard for decisions 

to be taken within pre-established criteria. However, it can present problems, as the values of each 

axis can become vague and imprecise (Goerlandt, Reiniers, 2016; Hong, et al., 2020) and subject 

to classification errors (Cox, 2008; Baybutt, 2015; Hsu, et al., 2016). 

In search of alternatives to deal with this situation, Markowski and Mannan (2008) 

evaluated the use of the Fuzzy Set Theory (FST) in the elaboration of RM for risk classification 

in chemical processes. Smith, Siefert and Drain (2009), Levine (2012), Hsu, et al., (2016) and 

Hong, et al., (2020) also recommend that MR uncertainty be treated with FST. 

According to Zadeh (1965), FST or Fuzzy Logic (FL) can work with uncertainty and 

inaccuracy and solve problems where there are no defined limits and precise values. Fuzzy 

Inference Systems (FIS) are based on the FST, on the IF-THEN fuzzy rules, and on the fuzzy 

reasoning process. FIS have been used in many areas, including data stream classification, 

monitoring ecological, decision on freeways, automation, pattern recognition, robotics, time 
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series, decision-making, performance risk assessment in public–private partnership projects and 

risk matrices (Markowski, Mannan, 2008; Ježková, et al., 2017; Gu 2023, Sedighkia, Datta, 2023; 

Vechione, Cheu 2022; Chen, et al., 2020).  

Javaheri, et al., (2023) presented an overview of the future perspectives of applied FL in 

the detection of attacks and network traffic anomalies. Pravena and Prasanna (2022) performed 

research on fuzzy-based game theory approaches to supply chain uncertainties in e-commerce 

applications. 

Some techniques, when applied to solve real-world problems, have their own 

computational characteristics, which fit only a specific set of problems. We can illustrate this 

behavior by analyzing Artificial Neural Networks (ANNs) and FIS. Although ANNs have the 

ability to detect patterns, classifying and grouping, they are not efficient to explain how these 

patterns are detected. On the other hand, FIS deals better with imprecision and is able to clarify 

decision-making, managing to explain the pattern found through its set of rules. 

ANNs and FL can be associated, generating a Fuzzy Neural Inference System (FNIS), 

including in the same model the treatment of the uncertainty of FL with the ability to learn and 

generalize the knowledge learned from an ANN (Wang, et al., 2014). 

Artificial Neural Networks (ANNs) have applications in all aspects of science and have 

been used in many business applications over recent decades (Tkáč, Verner, 2016; Sermpinis, et 

al., 2019).  

ANNs are models built of simple processing units called artificial neurons that calculate 

mathematical functions. They are particularly efficient for mapping the input and output of 

nonlinear systems and for parallel processing and simulating complex systems. Moreover, they 

are able to generalize the results obtained to previously unknown data, producing coherent and 

appropriate responses to patterns or examples that were not used in the training set. One widely 

used ANN architecture for classification is Multilayer Perceptron (MLP). An MLP consists of a 

set of units (nodes or neurons) that make up the input layer, one or more hidden layers, and an 

output layer, where the input signal propagates layer by layer. These structures can learn by 

example and perform interpolation and extrapolation of what they have learned through a learning 

algorithm (Haykin, 2001).  

Thus, the aim of this paper was to develop and apply a Fuzzy Inference System (FIS) and 

a Fuzzy Neural Inference System (FNIS) in the classification of MRs in projects to reduce 

uncertainty. FIS and FNIS have been successfully used to solve problems in several areas of 

knowledge such as medicine, industry, business, control and automation, information security, 

agronomy and academic applications, among others. 
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LITERATURE REVIEW 

Risk Matrices 

According to Wideman (1992), many projects fail to achieve their goals due to unforeseen 

events. There is a need to address uncertainty in the decision-making process using project risk 

management, as it may cause harm when neglected. (Nozick, et al., 2004; Sharma, Gupta, 2012). 

Although there is a correlation in using risk management tools and the successful 

achievement of a project’s goals and performance (Del Cano, La Cruz, 2002); the adoption of risk 

management tools is not as common as it should be, contributing to many failures in projects 

(Raz, et al., 2002). 

This scenario can be attributed to a lack of preparation and excessive optimism about the 

results of the project, which are manifestations of the cognitive biases reported by Montibeller 

and Winterfeldt (2015), Ball and Watt (2013), and Smith, et al., (2009), negatively influencing 

the risk analysis. The first step for risk management is the planning of the processes that will be 

employed in controlling. Next, the risks must be identified, mapped, and characterized. This set 

of risks will be further analyzed qualitatively and quantitatively, following a scale of priorities.  

After these analyses, a risk response plan should allocate resources to enable measures to 

properly address risks. Finally, risks are continuously monitored during project implementation 

to control action outcomes, external environmental impacts, and eventual new risks (Project 

Management Institute, 2017).  

A RM shows the aggregate assessment of risk through a graphical representation of its 

two dimensions: probability and impact. The RMs may vary in the number of rows and columns 

and the colors of the prioritization zones according to Cox, 2008 and Ni, et al., 2010, as shown in 

Figure 1. 

Figure 1: Risk Matrix 5×5. 

Source: Adapted from Cox (2008)  
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A traditional RM uses discrete consequence, probability, and risk categories, which 

can easily be described in IF-THEN rules (Markowski, Mannan, 2008). Figure. 1 shows a 

five-row, five-column RM (RM 5×5) with a gradation ranging from very low to very high for 

both impact and probability. This two-dimensional assessment is used to “plot” each risk in 

an RM, with high / medium / low zones. These zones are often colored following a traffic-

light-like convention, with red being used for high-priority risks that needs to be addressed 

urgently, yellow designating medium-priority risks to be monitored, and a green zone 

containing low priority risks (Hillson, 2009). 

The application of the RM requires the use of discrete categories. Although it is 

understood that any risk assessment that are not purely based on the assessment of 

mathematical consequences requires the use of subjective analysis, especially for their 

impacts, the discrete categories approach is being criticized (Cox, 2008). Therefore, the 

issue is not just a problem of the RM application, but also of a previous handling of the 

probability and the consequences of adverse events that are inaccurately assessed.  

In some cases, due to the non-repetitive characteristics of projects, subjective risk 

assessments are necessary because of the lack of statistical data to estimate the probability 

of an event based on the frequency these events. Categorization may be necessary, for these 

cases it is recommended to use numerical scales, without much granularity, as they are less 

subjective. Impact categorization may require inherently subjective judgments, reflecting 

the evaluator’s personal degree of risk aversion or arbitrary decisions about the extent of 

multiple small and frequent events. 

Cox (2008) states that the need for such judgments and their potential for 

inconsistencies shows that RMs can be filled in many ways. Thus, RM represents the 

combination of factual data on risk, its position means the perception of risk, and its 

consequent classification corresponds to the decision on how the risk should be treated, 

allocating resources to mitigation (red area), monitoring (yellow area) or acceptance (green 

area).  

Cox (2008) also indicates the importance of considering the context of qualitative 

analysis in projects, as it makes possible to identify and assess risks in a preliminary way 

that establishes a level of priority, so a consistent analysis can be performed over the 

prioritized risks. 

Markowski and Mannan (2008) evaluated the use of Fuzzy Set Theory in the 

elaboration of risk applied RMs in chemical processes, proposing FRMs. An RM displays the 

overall notion of a risk portfolio through a chart, characterizing its two dimensions, 

probability, and impact, employing discrete categories that can be described in the IF-THEN 
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rules. It is considered that research that apply systems to reduce the uncertainty contained 

in RMs are welcome because they can improve decision making in organizations. 

Fuzzy Logic 

Fuzzy Logic (FL) can work with uncertainty and inaccuracy to solve problems where 

no clear limits and precise values exist (Ježková, et al., 2017). This concept allows the 

creation of mathematical formulations that may characterize the uncertainty in parameters 

involved in the risk analysis method (Markowski, Mannan, 2008). 

FIS are based on Fuzzy Set Theory, fuzzy IF-THEN rules, and fuzzy reasoning 

processes. In a fuzzy set, the inclusion of an element in a set is linked to an association 

function of a linguistic term (high, low, medium) and a membership function, which gives 

each object a degree of association that varies between 0 and 1 (Ježková, et al., 2017). 

The formal definition of a fuzzy set is an extension of the classic set definition of a 

classic set: if X is a collection of objects generically denoted by x, then a fuzzy set A in x is 

defined as a set of ordered pairs (Ježková, et al., 2017), according to equation 1: 

μ𝐴 = {[𝑥, (𝑥)] | 𝑥∈𝑋}   (1) 

Where μ𝐴 (𝑥) is called membership function (FP of fuzzy set A). FP maps each element 

of x with a member-ship degree between 0 and 1. Thus, x is called the speech universe. An IF-

THEN rule takes the form “if x is A, then y is B,” where A and B are linguistic values defined by 

sets in the description universes of x and y. The linguistic values x and y belong respectively to 

the sets of linguistic variables x and y. Normally, the proposition “x is A” is called antecedent, 

while the proposition “y is B” is called consequent.  

In many cases, the conditional rule “if x is A then y is B” is abbreviated as follows.: 𝐴 → 

𝐵. From the expression 𝐴 → 𝐵, several operators can be formed to calculate the binary fuzzy 

relation 𝑅 = 𝐴 → 𝐵. Thus, R can be seen as a fuzzy set defined by a two-dimensional PF, according 

to equation 2: 

μR (𝑥,𝑦) = 𝑓(μ𝐴(𝑥),μ𝐵(𝑦)) = 𝑓(𝑎,𝑏)      (2) 

With μ𝐴 (𝑥) = 𝑎, μ𝐵 (𝑦) = 𝑏, where the function 𝑓 is called the fuzzy implication 

function. This function transforms the degrees of association from x to A and y to B from 

(x, y) to 𝐴 → 𝐵.  

The IF-THEN fuzzy rules and their relationships, together with the 

compositional inference rule (Zadeh, 1965), form the basis of the fuzzy reasoning 

framework, which is the basis of FIS. The IF-THEN rules and the fuzzy inference engine 

produce fuzzy output. This fuzzy set can be converted through a defuzzification engine 

to an exact number that best represents it. 
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Multilayer Perceptron 

Multilayer Perceptron (MLP) represents a set of units (nodes or neurons) that outlines the 

input layer, one or more hidden layers, and an output layer, where the input signal propagates 

through the ANN layer by layer. The topology of a MLP consists of the following information: 

total number of layers; number of neurons in the input layer; number of neurons in the hidden 

layer(s); and number of neurons in the output layer (Haykin, 2001). 

In Figure 2, the basic structure of the MLP with N input layer neurons (sensory neurons), 

hidden layer neurons, and a single output neuron is presented (No1). 

Figure 2: Topology of the MLP 

Source: adapted from Haykin (2001). 

The training algorithm used in a MLP is that of backpropagation, which works as follows: 

first, one is presented to the network input layer, and this pattern is then processed layer by layer 

until the output layer provides the processed response, fMLP calculated, according to equation 3: 

𝑓𝑀𝐿𝑃(𝑥) = 𝜑(∑ 𝑣𝑙 ∙ 𝜑𝑁𝑜𝑚
𝑖=1 (∑ 𝑤𝑙𝑖 + 𝑏10

𝑁𝑒𝑚
𝑗=1 ) + 𝑏0) (3) 

Where vl and wlj are synaptic weights, bl0 and b0 are its the biases, and φ is the 

activation function, commonly specified as the sigmoid function. The purpose of the training 

process is to choose appropriate parameters to minimize a predetermined cost function. 

This function is dependent on the desired response yi and, if there is an error, it is calculated. 

The function of the sum of the most usual quadratic error is presented, according to 

equation 4: 

𝐸(𝑋) =  ∑
1

2

𝑁
𝑖=1 [𝑓𝑀𝐿𝑃 (𝑥𝑖 ) − 𝑦𝑖]

2 (4) 

The calculated error is backpropagated from the output layer to the input layer and the 

weights are adjusted and processed, the weights are adjusted during the training process by error 

backpropagation. This process runs until a minimum error is obtained (Haykin, 2001). 

The error backpropagation algorithm used in the MLP determines its variations in 

synaptic weights, minimizing the error obtained in the output through learning by training data. 

For this, the algorithm is based on the descending gradient method, which, given a measure of the 
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error, seeks to modify the set of weights wij, reducing the error in the steeper direction of the 

defined surface in space w. 

The descending gradient algorithm establishes changes in weights wij by an amount Δwj 

proportional to the error gradient. This algorithm calculates the errors in the intermediate layers, 

thus enabling the adjustment of the weights by backpropagation, proportionally to the values of 

the connections between layers.  

A MLP trained with the backpropagation algorithm performs a nonlinear input and output 

mapping. An important question about the backpropagation algorithm is the training stop 

criterion. In absolute terms, the final solution will occur for the performance index (global error) 

equal to zero or within a very small value (Haykin, 2001; Lecchi, et al., 2022). 

Artificial Neural Networks and Fuzzy Logic 

Several hybrid architectures can derive from the combination of a FIS and an ANN, such 

as, for example, a Fuzzy Neural Inference Systems (FNIS) in which several ANNs are used in 

parallel to determine the FIS inference rules or NeuroFuzzy Inference Systems (NFIS) that 

employ a trained ANN to find a linear combination of the input variables that match the output 

variable. FNIS and NFIS are, in essence, SIF's parameterized through adaptive learning from a 

training database (Jang, 1993). 

Several authors have tried to gather the association of FL and ANNs potentialities to the 

resolution of problems in different areas of knowledge. Some examples like pattern recognition 

(Kwan, Cai, 1994), anomaly classification and detection (Meneganti, et al., 1998), sales forecast 

(Kuo, Xue, 1999), bank credit rating (Malhotra, Malhotra, 2002), mapping mineral potential 

(Porwal, et al., 2004),  adaptive load balancing based on delay-sensitive Internet applications 

(Chimmanee, et al., 2005),  projects in the construction industry (Cheng, Tsai & Sudjono, 2010),  

solving civil engineering problems (Knezevic, et al., 2018),  malware classification (Shalaginov, 

Franke, 2017),  analysis of sentiments in texts (Nguyen, et al., 2018),  medical diagnosis (Perova, 

Bodyanskiy, 2017),  and Biology (Zamirpour, Mosleh, 2018). Rajab and Sharma (2018) review 

on the applications of neuro-fuzzy systems in business. Škrjanc et al. (2019) researched about the 

evolution of approaches involving distortions and neuro-fuzzy for grouping, regression, 

identification, and classification. Souza (2020), Shihabudheen and Pillai (2018) and Kar, et al., 

(2014) performed a wide literature review on hybrid methods applying ANN with Fuzzy Logic, 

considering techniques, applications, and future trends, concluded that this specific field of 

research is particularly promising in terms of the contribution to applications in progressively 

more areas of knowledge, along with the evolution of the techniques. 

A FNIS has the characteristics of fuzzy logic in dealing with uncertainty and the ability 

to learn and generalize the knowledge learned from an ANN MLP type. Such a system follows 

the universal approximation theorem, i.e., it can correctly approximate nonlinear functions 
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(Wang, et al., 2014). This system is characterized by being a FIS, the inputs and outputs of which 

are crisp numbers. The FIS is coupled to an ANN, which adjusts the results of the inference system 

to the target data. However, the outputs are processed by input fuzzification, and inference rules 

based on defuzzification. 

METHODOLOGY 

The review of the literature on RM shows that there are several studies that seek to 

identify and reference the uncertainty inherent to the application of RMs and focus on proposing 

solutions within a traditional perspective. A second stream of research is focused on the use and 

application of FST to address this uncertainty.  

This paper proposes an improved view in relation to the work of this second group by 

the association of ANNs with FIS. Therefore, the following experiments were built to allow a 

comparative assessment of the studied methods, including traditional RMs, in order to visualize 

the inherent characteristics of each method and how each method can contribute to reduce the 

uncertainty of the RMs. The experiments were divided in data preparation and modeling, 

performed in two phases, experiments with FIS and experiments with FNIS. 

Data Preparation 

Four data groups were generated for the experiments using a random function. In the 

first group, named ALE, random numbers were generated, without correlation between them, 

where ALE_PROB is the risk probability and ALE_IMP the risk impact. ALE_RISK is the risk, 

which is defined by the product of probability and impact. Similarly, the second group named 

POS was obtained, in this case the impact POS_IMP is positively correlated with the probability 

POS_PROB, i.e., POS_IMP = POS_PROB and then POS_RISK was calculated by multiplying 

them. The third group NEG was obtained analogously, using NEG_IMP = 1 – NEG_PROB. 

Finally, the fourth group POS_NEG where half of the data was generated using the formula 

POS_NEG_IMP = POS_NEG_PROB and half with POS_NEG_IMP = 1 – POS_NEG_PROB. 

Each data group was composed with 1000 instances. 

With the help of a spreadsheet, each of the data for PROB and IMP were classified in a 

RM 5x5, and the classification colors distributed according to Figure. 1. In the spreadsheet, red 

color cells were classified as 1, yellow as 2, and green as 3. The results of these classifications 

were stored in the variables: ALE_CR55; POS_CR55; NEG_CR55; and POS_NEG_CR55. Table 

1 presents the generated data groups, and their respective description are consolidated. 
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Table 1: Data groups used in the study. 

Components Description 

[ALE_IMP, ALE_PROB] ALE_RISK 

ALE_CR55 

The data [ALE_IMP] and [ALE_PROB] are uncorrelated as they were 

generated completely independently. [ALE_RISK] is the result of their 

multiplication and from RM5×5 the rating [ALE_CR55]. 

[POS_IMP, POS_PROB] POS_RISK 

POS_CR55 

Data [POS_IMP] and [POS_PROB] are positively correlated 

[POS_RISK] is the result of their multiplication and from RM5×5 the 

rating [POS_CR55]. 

[NEG_IMP, NEG_PROB] NEG_RISK 

NEG_CR55 

Data [NEG_IMP] and [NEG_PROB] are negatively correlated. 

[NEG_RISK] is the result of their multiplication and from RM5×5 the 

rating [NEG_CR55]. 

[POS_NEG_IMP, 

POS_NEG_PROB] 

POS_NEG_RISK 

POS_NEG_CR55 

The data [POS_NEG_IMP] and [POS_NEG_PROB] are negatively 

and positively related in a 50% split of the data. [POS_NEG_RISK] is 

the result of their multiplication and from RM5×5 the rating 

[POS_NEG_CR55]. 

Source: Authors. 

It is important to note that all _RISK data in experiments refers to the real value of each 

risk, and all _CR55 data is its classification according to the rules learned from the adopted RM 

5x5. 

Conducting The Experiments 

Before starting the procedures, the necessary tools were prepared for its execution. 

MATLAB software version R2014a was employed using an Intel® Core™ i7-6500DU CPU 

@2.5Ghz processor computer with 16GB of RAM. FIS was built into the Fuzzy Toolbox module, 

which was also employed in FNIS. In FNIS, the data were also processed in the Neural Net Fitting 

Toolbox module. The experiments were divided in two steps: step 1 will use FIS and step 2 will 

present experiments with FNIS. 

In step 1, experiments with FIS were built using PROB and IMP data as inputs. Each 

instance of the groups was associated with membership functions corresponding to each of the 

RM5×5 cells, i.e., very high (VH), high (H), medium (M), low (L), and very low (VL), which 

were associated with Gaussian functions. Inference rules were extracted from each of the RM5×5 

cells for a total of 25 rules, one for each matrix cell. A Mandani inference and defuzzification 

system was used by the centroid method (Jang, et al., 1997). 

For each set of probability and impact of the ith risk, [PROBi, IMPi] was classified 

according to the values of the RM inference rules; each cell of the Aj RM was converted to an 

inference rule, which results in Bl. The result is the crispy F55 i value, which is the fuzzy 

corresponding risk of Ri = PROBi × IMPi. The general scheme of the inference process is 

presented in Figure 3. 
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Figure 3: Diagram of the inference process in FIS.  

Source: Authors.  

In the proposed system, X is a composite matrix of probability and impact for each group. 

Table 2 shows the structure and the variables generated for each data set. 

Table 2: List of FIS inputs and outputs. 

FIS input FIS output 

[POS_IMP, POS_PROB] POS_F55 

[NEG_IMP, NEG_PROB] NEG_F55 

[POS_NEG_IMP, POS_NEG_PROB] POS_NEG_F55 

[ALE_IMP, ALE_PROB] ALE_F55 

Source: Authors. 

In Figure 4, the block diagram of the experiments with FIS is presented. 

Figure 4: Block diagram of experiments with FIS. 

Source: Authors 

In step 2, experiments with FNIS were built employing the same elements of FIS: (i) 

Gaussian membership functions; (ii) Mandani inference system; and (iii) centroid defuzzification. 

At this stage, FNIS output data were processed in a two-layered, three-neuron MLP, which had 

training. Table 3 shows the structure and the variables generated for each data set. 
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Table 3: List of FNIS inputs and outputs.  

FNIS input 

Intermediate data FNIS Output (FNIS) 

POS_RISK 

(training) 
NEG_RISK 

POS_NEG_RISK 

ALE_RISK 

[POS_IMP, POS_PROB] POS_F55 y_POS 

[NEG_IMP, NEG_PROB] NEG_F55 y_NEG 

[POS_NEG_IMP, POS_NEG_PROB] POS_NEG_F55 y_POS_NEG 

[ALE_IMP, ALE_PROB] ALE_F55 y_ALE 

Source: Authors 

In Figure 5, the block diagram of experiments with FNIS is presented. 

Figure 5: Block diagram of experiments with FNIS. 

Source: Authors. 

 

FINDS AND DISCUSSION 

This section is organized as follows. For each dimension, the empirical results are first 

presented including relevant quotes. Theoretical propositions are then formulated, and the 

findings are then compared to literature. 

Results and Analysis 

The dataset was analyzed according to each data group, following the preprocessing 

sequence, the results and experiments with FIS, and the results and experiments with FNIS. The 

inference system outputs were compared to evaluate the effects of the experiments on the input 

data. 

Following the sequence proposed above, the dataset was initially prepared to the 

experiments. The results of this preparation are presented in Figure 6, where each chart refers to 

the RISK item of each instance in each of the generated data groups. All charts were sorted based 

on the RISK variable of the scope. 
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Figure 6: Charts with results of data preparation (in each chart, the data prepared for 

variable RISK and CR55 are presented). 

 

Source: Authors. 

An important aspect to note is that in the data groups where behavior is correlated (POS 

and NEG), the classification results are more stable and follow the evolution of the RISK variable. 

In the dataset where data correlation is weaker, there is greater instability, and classification 

(CR55) does not follow the same growth direction as RISK in some zones. This means that the 

use of a rating matrix can be misleading, as a numerically higher risk can be ranked lower than a 

numerically lower risk, which is an inconsistency of the RMs.  

To further illustrate this, in Figure 7, the charts of ALE_IMP × ALE_PROB × 

ALE_RISK and ALE_IMP × ALE_PROB × ALE_CR55 are presented, as well as their respective 

contour maps. 

Figure 7: At the top are the response surface ALE_IMP × ALE_PROB × ALE_RISK 

and its outline map at the bot-tom ALE_IMP × ALE_PROB × ALE_CR55. 

 

Source: Authors. 

Figure 7 shows that RM can be understood as a simplification of the contour map of the 

response surface of the RISK function borders between each of the possible classes. Thus, 

numerically close values for risks may have different classifications. 
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The results of the FIS application (step 1 in section 3.2) are presented in Figure 8, where 

F55 represents the output of FIS, which were sorted according to the respective FIS variable value 

of each instance in each data group. 

Figure 8: Results of experiments with FIS (in each chart, data are presented comparing 

the RISK variable and the output of FIS F55). 

 

Source: Authors. 

The use of FIS resulted in a system that has an adherence to RM and the effect of 

inference rules. It still presents some problems like the lack of consistency with the RISK variable. 

The data from the POS database indicate a different result from the others, as they make it possible 

to differentiate risks in each of the classification zones. However, when applying FIS in the 

POS_NEG, ALE bases, there is an instability in the results, which may affect the risk 

classification. The NEG base, on the other hand, maintains its characteristic of not generating 

differences between risks. In Figure 9, the response surface and contour map for ALE_IMP × 

ALE_PROB × ALE_F55 are shown. 

Figure 9: Response surface and contour map for ALE_IMP × ALE_PROB × ALE_F55. 

 

Source: Authors. 

The first chart in Figure 9 shows that FIS has helped to attenuate variations between 

values, the zone classified as 2 in the inference rules in FIS is still different from the shape of the 

response surface (RISK), being closer to that in RM. To eliminate inconsistencies that still exist 

in the FIS output, FNIS was used, whose outputs are shown in Figure 10 (step 2 in section 3.2).  
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Figure 10: Results of experiments with FNIS. 

 

Source: Authors. 

The charts in Figure 10 show the results of the application of FNIS and reveal that 

nonlinear functions were obtained for each of the data groups, which allows to classify each of 

the risk instances generated, without the inconsistencies observed in the application of RMs and 

FIS. Figure 11 illustrates the response surface and contour map of the FNIS for the ALE data 

group (ALE_IMP × ALE_PROB × y_ALE). 

Figure 11: Response surface and FNIS contour map for ALE data group (ALE_IMP × 

ALE_PROB × y_ALE). 

 

 

Source: Authors. 

About the analysis of the results, it is highlighted that the results obtained with the 

application of the FNIS were more stable, even in conditions with random data as in the ALE and 

POS_NEG groups. The contour map illustrated how the result of the FNIS is a continuous 

function, which allows classifying each instance of the risks generated. As a result of the inference 

rules extracted from the RM, the risks are weighted and quantified, allowing the person 

responsible for the project to clearly seek the risks that will impact their results. 

Thus, risks classified as high on the MRs need to be prioritized according to the red zone 

on the contour map, which coincides with the red zone on the MRs. In the same context, the 

yellow zone, whose classification is medium, is related to the risks where the decision maker 

hesitates and normally chooses to wait. Finally, the green area, with a low rating, indicates where 

the risk is minimal or negligible.  
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It is noteworthy that in RM, the classes are discrete, that is, the changes between classes 

are abrupt and values very close to the risks can be classified differently. With the application of 

the FNIS, these categories become continuous, making the categorization process between close 

values less subject to sudden changes and still respecting the inference rules extracted from the 

RMs. 

The results obtained show both techniques have advantages when compared with 

traditional RMs. Especially when it is possible to evaluate errors in the classification and the 

occurrence of tiles in a large quantity of risks. Furthermore, FNIS have proven to be more efficient 

in avoiding risk tiles and can be used to create risk ranking according to the risk rating of an RM. 

CONCLUSION 

In this paper, two systems for classifying RMs with the objective of reducing the 

uncertainty contained in the matrix were developed and applied: Fuzzy Inference System and 

Fuzzy Neural Inference System. The results showed that the rules extracted from the RMs, 

applying FIS and FNIS can generate continuous functions that allow classification, useful for risk 

prioritization. It was also verified that the risk classification, through discrete indicators obtained 

as MRs, can generate inconsistencies in the creation of rankings. Computational experiments were 

able to produce a function that reflects how the decision maker should prioritize which risks need 

to be mitigated, monitored, or ignored. 

RM presents an approximation of the risk function, which can be handled by the 

decision maker, facilitating the risk classification process. However, this approximation results in 

loss of information quality, mainly at the border between the areas. The use of the FIS made it 

possible to obtain a function that smoothest these contour lines between the areas of the MR 

classes, but some inconsistencies were still observed in the results. With the use of the FNIS, 

however, the functions obtained were consistent with the MRIs and with the risk functions. 

Such results have a direct impact on the reduction of uncertainty in the results of the 

MRs, avoiding classification errors verified in the application of traditional methods. Another 

contribution is the possibility of classifying risks without the occurrence of ties between the 

values, which makes the decision-making and prioritization process difficult, especially in sets of 

large numbers of risks. The results encourage further studies, employing other machine learning 

algorithms in the treatment of RMs, as well as evaluating their classification performance in real 

cases of project risk. 
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