Modification of sisal cellulose (Agave sisalana) with poly(vinyl alcohol) and its evaluation in a water-heavy oil system

Modificação de celulose de sisal (Agave sisalana) com poli(álcool vinílico) e a sua avaliação em sistema água-óleo pesado

Autores

  • Schiliene Moreno
  • Renata Strappa
  • Denes Carlos Santos da Graça GPDCMat - Universidade Federal de Sergipe
  • Gisélia Cardoso

DOI:

https://doi.org/10.53660/CLM-780-23A37

Palavras-chave:

Celulose (Agave sisalana), Modificação de celulose, FTIR, PVA, Produção de petróleo

Resumo

Cellulose is a natural, non-toxic and biodegradable polymer that can have its structure modified to give it the desired properties. This study aimed to modify sisal cellulose (Agave sisalana) from its xanthate with poly (vinyl alcohol) (PVA) and to evaluate its viscosifying action on the flow behavior of a water-heavy oil system for petroleum production, on a laboratory bench. The modified process was carried out by graphitization and monitored by FTIR. The viscosifying potential was evaluated by measuring intrinsic degrees and the action of modified sisal cellulose (CSM) in the water-heavy oil system was gradually evaluated, at temperatures of 25°C and 60°C, using a brookfield viscometer. The FTIR spectra confirmed the modification by the appearance of the wavenumber band 880 cm-1, indicating the occurrence of the substitution reaction of [–OH] groups of the C-6 of the cellulose structure. The rate of the water-heavy oil system with the CSM was equal to the graduation of the heavy oil, with the same flow activation energy (Ea) in the amount of 66,509 kJ/mol, which gave potential use of the CSM in the correction of the profile of result of the system under study

Downloads

Não há dados estatísticos.

Referências

ALBINANTE, S. R.; PACHECO, E. B. A. V.; VISCONTE, L. L. Y. Revisão dos tratamentos químicos da fibra natural para mistura com poliolefinas. Química Nova, v. 36 (1),p. 114-122, 2013.

ALENDAR, A.; SAIN, M. Isolation and characterization of nanofibers from agricultural residues- Wheat straw and soy hulls. Bioresource technology, v. 99, p. 1664-1671, 2008

ASA- Applied Science Associates South American. Modelagem do Descarte de Efluentes a partir dos Projetos Piloto de Guará e Desenvolvimento da Produção de Iracema, Bacia de Santos, 2011.

BAILEY, S. E.; OLIN, T. J.; BRICKA, R.. M.; ADRIAN, D. D. A review of potentially low-cost sorbents for heavy metals. Water Research, v. 33, p. 2469-2479, 1999.

BHAT, N. V.; NATE, M. M.; KURUP, M. B.; BAMBOLE, V. A.; SABHARWAL, S. Effect of g-radiation on the structure and morphology of polyvinyl alcohol films. Nuclear Instruments and Methods in Physics Research, v. 237, n. 34, p. 585-592, 2005.

CAMPOS, A., & ASSIS, P. Biomassa: alternativa a curto prazo para a produção de aço com baixa emissão de CO2. Concilium, 19(1), 2022. https://doi.org/10.53660/CLM-234-244.

GRIEBLER, C. B.; MARQUES, G. DOS S.; FARIA, E. DE O; & PARENTE, H. T. Economia circular como oportunidade de crescimento para as pequenas empresas têxteis. Concilium, 22(5), 922–937, 2022. https://doi.org/10.53660/CLM-470-559.

HASSAN, C. M.; PEPPAS, N. A. Structure and Applications of Poly (vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing / Thawing Methods. Advances in Polymer Science, v. 153, p. 38-62, 2000.

HIRANO, S.; USUTA, A.; MIDORIKAWA, T. Novel fibers of IV-acylchitosan and its cellulose composite prepared by spinning their aqueous xanthate solutions. Carbohydrate Polymers. v. 33, p. 1-14, 1997.

Indústria Brasileira de Árvores - IBÁ. Relatório anual ano base 2019. IBRE/FGV, 2020. Disponível em: <https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf> Acesso em agosto 2022.

KHATUA, C.; CHINYA, I.; SAHA, D.; DAS, S.; SEN, R.; DHAR. A modified clad optical fibre coated with pva/tio2 nano composite for humidity sensing application. International Journal on Smart Sensing and Intelligent Systems, v. 8, n. 3, p. 1424-1442, 2015.

LEWIS, A.; HEAYSMAN, C. Biomedical Applications of Hydrogels: Poly(vinyl alcohol)- Based Hydrogels for Embolotherapy and Drug Delivery. In: Lon, X. J.; Scherman, O.A. (eds), Polymeric and self assembled hydrogels: from fundamental understanding to applications, chap. 10, Royal Society of Chemistry, 2013.

LI, Q.; RENNECKAR, S. Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules, v. 12, p. 650-659, 2011.

LUCAS, E. F.; SOARES, B. G.; MONTEIRO, E. Caracterização de Polímeros: Determinação de Peso Molecular e Análise Térmica. 1 ed. Rio de Janeiro: E-papers, 2001.

SANTOS, C. M. R.; GRAÇA, D. C. S.; CARDOSO, G. Modificação de celulose e avaliação da sua ação no fenômeno de parafinação em petróleo. Scientia Plena. v. 12, n. 5, 2016.

NASCIMENTO, D. M. D.; ALMEIDA, J. S.; VALE, M. D. S.; LEITÃO, R. C.; MUNIZ, C. R.; FIGUEIRÊDO, M. C. B. D.; MORAIS, J. P. A comprehensive approach for obtaining cellulose nanocrystal from coconut fiber. Part I: Proposition of technological pathways. Industrial Crops and Products, v. 93, p. 66-75, 2016.

PAVIA, D. L.; BASSER, G. M.; MORRILL, T.C. Introduction to Spectroscopy. 2 ed. New York: Saunder College, 1996.

PAWCENIS, D.; SYREK, M.; AKSAMIT-KOPERSKA, M. A.; LOJEWSKI, T.; LOJEWSKA, J. Mark–Houwink–Sakurada coefficients determination for molar mass of silk fibroin from viscometric results. SEC-MALLS approach. Royal Society of Chemistry, v. 6, n. 44, p. 38071-38078, 2016.

PILLAI, S. S.; DEEPA, B.; ABRAHAM, E.; GIRIJA, N.; GEETHA, P.; JACOB, L.; KOSHY, M. Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: Equilibrium and kinetic studies. Ecotoxicology and Environmental Safety. v. 98, p. 352-360, 2013.

SANTOS, C. M. R.; GRAÇA, D. C. S.; CARDOSO, G. Modificação de celulose e avaliação da sua ação no fenômeno de parafinação em petróleo. Scientia Plena. v. 12, n. 5, 2016.

VO, T. K.; PARK, H. K.; NAM, C. W.; KIM, S. D.; KIM, J. Facile synthesis and characterization of γ-AlOOH/PVA composite granules for Cr(VI) adsorption. Journal of Industrial and Engineering Chemistry, v. 60, p. 485-492, 2018.

WANG, C.; WANG, H.; GU, G. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption. Carbohydrate Polymers, v. 182, p. 21-28, 2018.

XIA, L.; HU, Y. X.; ZHANG, B. H. Kinetics and equilibrium adsorption of copper(II) and nickel(II) ions from aqueous solution using sawdust xanthate modified with ethanediamine. Transations of Nonferrous Metals Society of China, v. 24, p. 868-875, 2014.

XU, Y.; ATRENS, A. D.; STOKES, J. R. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods. Journal of Colloid Interface Science. v. 496, p. 130-140, 2017.

ZHANG, R.; HE, X.; CAI, S.; LIU, K. Rheology of deluted and semi-diluted partially hydrolyzed polyacrylamide solutions under shear: experimental studies. Petroleum. v. 3, p. 258-265, 2017

ZHENG, L.; MENG, P. Preparation, characterization of corn stalk xanthates and its feasibility for Cd (II) removal from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, v. 58, p. 391-400, 2016.

Downloads

Publicado

2023-02-13

Como Citar

Moreno, S., Strappa, R., da Graça, D. C. S., & Cardoso, G. (2023). Modification of sisal cellulose (Agave sisalana) with poly(vinyl alcohol) and its evaluation in a water-heavy oil system: Modificação de celulose de sisal (Agave sisalana) com poli(álcool vinílico) e a sua avaliação em sistema água-óleo pesado. Concilium, 23(2), 531–541. https://doi.org/10.53660/CLM-780-23A37

Edição

Seção

Articles