Effectivennes of an autogenous vaccine versus a comercial vaccine for tilapia

Eficácia de uma vacina autógena diante de uma vacina comercial para tilápias

Autores

  • Renan Silva De Rossi
  • Raquel Richter Nazari
  • Ademir Calvo Fernandes Junior
  • Cláudia Sampaio Fonseca Repetti
  • Rodrigo Prevedello Franco
  • Rodolfo Claudio Spers
  • Fábio Fernando Ribeiro Manhoso
  • Carlo Rossi Carratore
  • Patricia Cincotto dos Santos Bueno Universidade de Marilia

Palavras-chave:

Aquaculture, Tilapia, Vaccination, Vaccine, Autogenous vaccine

Resumo

The advancement of Brazilian tilapia farming has brought new health challenges, with Streptococcus agalactiae infections being particularly concerning. To combat this, both commercial vaccines (made with heterologous strains) and autogenous vaccines (made with homologous strains) have been developed. This study analyzed data from three groups: a control group, a group vaccinated with a commercial vaccine (CM), and a group vaccinated with a custom autogenous vaccine (AU). Each group contained 27,500 fish. After rearing, the fish were vaccinated and monitored under identical conditions. The study compared the efficacy of both vaccines, finding that the AU group, while 20% more expensive, resulted in a 2.9% higher survival rate than the CM group and 6.6% higher than the control group. Additionally, the AU group had a 10.6% higher average weight gain than the CM group and 12% higher than the control group. Revenue per tank was 10.49% higher in the AU group compared to the CM group and 14.94% higher than the control group. Moreover, the AU group showed a lower feed conversion rate and higher productivity per cubic meter, indicating the effectiveness of the autogenous vaccine.

Downloads

Não há dados estatísticos.

Referências

ABUSELIANA, A. F.; DAUD, H. M.; ABDUL-AZIZ, S.; KHAIRANI-BEJO, S.; ALSAIS, M. Streptococcus agalactiae the etiologic agent of mass mortality in farmed red tilapia (Oreochromis sp.). Journal of Animal and Veterinary Advances, v. 9, p. 2640-4046, 2010.

AMEND, D. F. Potency testing of fish vaccines. In: Biological standardization, Fish Biologics: Serodiagnostics and Vaccines. Developmental Biology Standard, v. 49, p.447-454, 1981.

BARONY, G. M.; TAVARES, G. C.; PEREIRA, F. L.; CARVALHO, A. F. Large-scale genomic analysis reveals the population structure and evolutionary trends of Streptococcus agalactiae strains in Brazilian fish farms. Scientific Reports, v.7, n. 13538, 2017. DOI: https://doi.org/10.1038/s41598-017-13228-z.

BARROSO, R. M.; MUÑOZ, A. E. P.; CAI, J. Social and economic performance of tilapia farming in Brazil. FAO Fisheries and Aquaculture Circular, n. 1181, 2019. DOI: https://doi.org/https://doi.org/10.4060/CA5304EN.

BARTLEY, D. M. World aquaculture 2020 - a brief overview. FAO Fisheries and Aquaculture Circular, n. 1233, 2022. DOI: https://doi.org/10.4060/cb7669en.

BWALYA, P.; HANG’OMBE, B. M.; GAMIL, A. A.; MUNANG’ANDU, H. M.; EVENSEN, Ø.; MUTOLOKI, S. A whole-cell Lactococcus garvieae autovaccine protects Nile tilapia against infection. PLoS One, v. 15, n. 3, e02307399, 2020. DOI: https://doi.org/10.1371/journal.pone.0230739.

CARVALHO, R. S. D. F. S. M. Enquadramento regulamentar das vacinas autógenas de uso veterinário e caracterização da sua utilização em Portugal (2007). Dissertation (Master’s in Pharmacy). School of Pharmacy, University of Lisbon, 166p. Access: https://repositorio.ul.pt/bitstream/10451/244/1/3675_Tese_final__RC_20070913.pdf . Last access: Abril 25th , 2024.

CHANG, P. H.; PLUMB, J. A. Effects of salinity on Streptococcus infection of Nile tilapia, Oreochromis niloticus. Journal of Applied Aquaculture, v. 6, n. 1, p. 39-45, 2010. DOI: https://doi.org/10.1300/J028v06n01_04.

DADAR, M. DHAMA, K.; VAKHARIA, V. N.; HOSEINIFAR, S. H.; KARTHIK, K.; TIWARI, R.; KHANDIA, R.; MUNJAL, A.; SALGADO-MIRANDA, C.; JOSHI, S. K. Advances in aquaculture vaccines against fish pathogens: Global status and current trends. Fisheries Science & Aquaculture, v. 25, n. 3, p. 184-217, 2017. DOI: https://doi.org/10.1080/23308249.2016.1261277 .

EVANS, J. L.; KLESIUS, P. H.; GILBERT, P. M.; SHOEMAKER, C. A. Characterization of beta-haemolytic Group B Streptococcus agalactiae in cultured Seabream, Sparus auratus L., and wild mullet, Liza klunzingeri (Day), in Kuwait. Journal of Fish Diseases, v. 25, n. 9, p. 505-5013, 2002. DOI: https://doi.org/10.1046/j.1365-2761.2002.00392.x.

EVANS, J. J.; KLESIUS, P. H.; SHOEMAKER, C. A. An overview of Streptococcus in warm-water fish. Aquaculture Health Internacional, v. 7, p. 10-14, 2006.

FIRDAUS-NAWI, M.; YUSOFF, S. M.; ABDULLAH, S. Z.; ZAMRI-SAAD, M.; Efficacy of feed-based adjuvant vaccine against Streptococcus agalactiae in Oreochromis spp. In Malaysia. Aquaculture Research, v. 45, n. 1, p.87-96, 2012. DOI: https://doi.org/10.1111/j.1365-2109.2012.03207.x.

GREIN, K.; JUNGBÄCK, C.; KUBIAK, V. Autogenous vaccines: Quality of production and movement in common market. Biologicals, v. 76, p. 36-41, 2022. DOI: https://doi.org/10.1016/j.biologicals.2022.01.003.

JIMÉREZ, A.; TIBATÁ, V.; JUNCA, H.; ARIZA, F.; VERJAN, N.; IREGUI, C. Evaluating a nested-PCR assay for detecting Streptococcus agalactiae in red tilapia (Oreochromis sp.) tissue. Aquaculture, v. 321, n. 3-4, p.203-206, 2011. DOI: https://doi.org/10.1016/j.aquaculture.2011.09.011.

LEIRA, M. H.; REGHIM, L. S.; CIACCI, L. S.; DA CUNHA, L. T.; BOTELHO, H. A.; BRAZ, M. S.; DIAS, N. P.; MELO, C. C. V. Problemas sanitários das pisciculturas brasileiras. Pubvet, v. 11, n. 6, p. 538-544, 2017. DOI: https://doi.org/10.22256/PUBVET.V11N6.538.

LIM, C.; WEBSTER, C. D. Tilapia: Biology, culture, and nutrition. African Journal of Aquatic Science, v. 33, n. 1, p. 103, 2008. DOI: https://doi.org/10.2989/AJAS.2008.33.1.14.415.

LIU, G.; ZHU, J.; CHEN, K.; GAO, T.; YAO, H.; LIU, Y.; ZHANG, W.; LU, C. Development of Streptococcus agalactiae vaccines for tilapia. Diseases of Aquatic Organisms, v. 122, n. 2, p.163-170, 2016. DOI: https://doi.org/10.3354/dao03084.

MANUNG’ANDU, H. M.; MUTOLOKI, S.; EVENSEN, Ø. Non-replicating vaccines. In: GUDDING, R.; LILLEHAUG, A.; EVENSEN, Ø. Fish Vaccination. 1st edition. Wiley Blackwell. Chapter 3, pp. 22-32, 2014.

MUSA, N.; WEI, L. S.; MUSA, N.; HAMDAN, R. H.; LEONG, L. L.; WEE, W.; AMAL, M. N.; KUTTY, B. M.; ABDULLAAH, S. Z. Streptococcus in red hybrid tilapia (Oreochromis niloticus) commercial farms in Malaysia. Aquaculture Research, v. 40, n. 5, p. 630-632, 2009. DOI: https://doi.org/10.1111/j.1365-2109.2008.02142.x.

NIZET, V.; RUBENS, C. Pathogenic mechanisms, and virulence factor of Group B Streptococci. In: FISCHETTI, V. et al. Gram-positive pathogens. American Society of Microbiology, p. 125-135, 2000.

NGUYEN, H. T.; KANAI, K.; YOSHIKOSHI, K. Immunohistochemical examination of experimental Streptococcus iniae infection in Japanese flounder Paralichthys olivaceus. Fish Pathology, v. 36, n. 3, p. 169-178, 2001. DOI: https://doi.org/10.3147/jsfp.36.40.

RIVAS, A. V. Vacina bivalente contra infecção por Aeromonas sobria e Streptococcus agalactiae em Tilápias-do-Nilo (reochromis niloticus) no Oeste do Paraná, Brasil (2020). Dissertation (Master’s in Sciences). School of Biosciences, Federal University of Latin American Integration, 57p. Access: https://dspace.unila.edu.br/server/api/core/bitstreams/891878af-63ef-4ef7-9f70-64f08a324c68/content. Last access: Abril 25th , 2024.

SALVADOR, R.; MÜLLER, E. E.; LEONHARDT, J. H.; PRETTO-GIORGANO, L. G.; DIAS, J. A.; FREITAS, J. C.; MORENO, A. M.; Isolamento de Streptococcus spp de tilápias do Nilo (Oreochromis niloticus) e qualidade da água de tanques rede na Região Norte do Estado do Paraná, Brasil. Semina: Ciências Agrárias, v. 24, n. 1, p. 35-42, 2003. DOI: https://doi.org/10.5433/1679-0359.2003v24n1p35.

SCHULTER, E. P., VIEIRA FILHO, J. E. R. Evolução da psicultura no Brasil: Diagnóstico e desenvolvimento da cadeia produtiva da tilápia. Instituto de Pesquisa Econômica Aplicada (Ipea), v. 2328, 2017. DOI: https//doi.org. /10.13140/RG.2.2.26250.57289.

WATTS, M; MUNDAY, B.L; BURKE, C.M. cDNA sequences and organization of IgM heavy chain genes in two holostean fish. Developmental and Comparative Immunology, v. 19, p. 153-164, 1995. DOI: https://doi.org/10.1016/0145-305X(94)00063-L

WANG, Q.; FU, T.; LI, X.; LUO, Q.; HUANG, J.; SUN, Y.; WANG, X. Cross-immunity in Nile tilapia vaccinated with Streptococcus agalactiae and Streptococcus iniae vaccines. Fish & Shellfish Immunology, v. 97, p.382-389, 2020. DOI: https://doi.org/10.1016/j.fsi.2019.12.021.

WONG, K. Y.; KHAIR, M. H.; LIAN SONG, AA. L.; MASARUDIN, M. J.; LOH, J. Y.; CHONG, C. M.; BEARDALL, J.; TEO, M. Y. M.; IN, L. L. A. Recombinaant lactococcal-based oral vaccine for protection against Streptococcus agalactiae infestions in tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, v. 149, 109572, 2024. DOI: https://doi.org/10.1016/j.fsi.2024.109572.

WONGSATHEIN, D. Factor affecting experimental Streptococcus agalactiae infection in tilapia, Oreochromis Niloticus (2012). Thesis (Doctorate in Aquaculture). Institute of Aquaculture, University of Stirling. 169p. Access: http://hdl.handle.net/1893/10375 . Last access: Abril 25th , 2024.

ZAMRI-SAAD, M.; AMAL, M. N. A.; SITI-ZAHRAH, A. Pathological changes in red tilapias (Oreochromis spp.) naturally infected by Streptococcus agalactiae. Journal of Comparative Pathology, v. 143, n. 2-3, p.227-229, 2010. DOI: https://doi.org/10.1016/j.jcpa.2010.01.020.

Downloads

Publicado

2024-09-04

Como Citar

De Rossi , R. S. ., Nazari, R. R. ., Fernandes Junior, A. C. ., Repetti, C. S. F. ., Franco, R. P. ., Spers, R. C. ., Manhoso, F. F. R. ., Carratore, C. R. ., & Bueno, P. C. dos S. . (2024). Effectivennes of an autogenous vaccine versus a comercial vaccine for tilapia : Eficácia de uma vacina autógena diante de uma vacina comercial para tilápias . Concilium, 24(18), 77–93. Recuperado de http://clium.org/index.php/edicoes/article/view/4090

Edição

Seção

Articles