Efficacy of rhizobacteria in suppressing weed growth

Eficácia de rizobactérias na supressão do crescimento de plantas daninhas

Autores

Palavras-chave:

Bioherbicide, Biocontrol, Deleterious rhizobacteria

Resumo

The production of bioherbicides from isolates of deleterious rhizobacteria capable of suppressing plant growth is a sustainable method for weed management. The objective of this research was to evaluate whether rhizobacteria that potentially inhibit plant growth interfere with the growth of weeds. The experiment was carried out in a greenhouse in a completely randomized design with four replications. The treatments consisted of inoculating seeds of the weeds Bidens pilosa L., Senna occidentalis (L.) Link, and Ipomoea nil (L.) Roth with two distinct isolates of rhizobacteria (171 and 122), as well as cultivating these weeds without inoculation. At 50 days after sowing of the weeds, the height, stem diameter, shoot dry matter, and root dry matter were measured. Inoculation with isolates 171 and 122 did not influence the growth in height, diameter, shoot dry matter, or root dry matter of the weeds. It is concluded that rhizobacteria 171 and 122 do not have the potential to inhibit the growth of the weeds B. pilosa, S. occidentalis, and I. nil.

Downloads

Não há dados estatísticos.

Biografia do Autor

Maria Júlia Medeiros Guimarães Guimarães , Universidade do Estado de Minas Gerais

Universidade do Estado de Minas Gerais, Unidade Ituiutaba, Brasil

Maurício Dutra Costa Costa, Universidade Federal de Viçosa

Universidade Federal de Viçosa, Campus Viçosa, Brasil

Referências

BERTOLA, M.; FERRARINI, A.; VISIOLI, G. Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms, v. 9, n. 7, p. 1400, 28 Jun. 2021.

CALDWELL, C. J. et al. Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Canadian Journal of Microbiology, v. 58, n. 1, p. 1–9, Jan. 2012.

CÂNDIDO, A. C. DA S. et al. Potencial alelopático da parte aérea de Senna occidentalis (L.) Link (Fabaceae, Caesalpinioideae): bioensaios em laboratório. Acta Botanica Brasilica, v. 24, n. 1, p. 235–242, Mar. 2010.

CARNEIRO, G. D. O. P. et al. EFICÁCIA DE HERBICIDAS NO CONTROLE PÓS-EMERGÊNCIA DE CORDA-DE-VIOLA. Revista Brasileira de Herbicidas, v. 19, n. 2, p. 666, 6 Jun. 2020.

CASIMERO, M. et al. Herbicide use history and weed management in Southeast Asia. Advances in Weed Science, v. 40, n. spe1, 22 Dec. 2022.

DAHIYA, A.; CHAHAR, K.; SINDHU, S. S. The rhizosphere microbiome and biological control of weeds: A review. Spanish Journal of Agricultural Research, v. 17, n. 4, p. 1–13, 2019.

GUPTA, A. et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. International Journal of Environmental Research and Public Health, v. 19, n. 5, p. 3141, 7 Mar. 2022.

IMAIZUMI, S.; HONDA, M.; FUJIMORI, T. Effect of Temperature on the Control of Annual Bluegrass (Poa annua L.) with Xanthomonas campestris pv. poae (JT-P482). Biological Control, v. 16, n. 1, p. 13–17, Sep. 1999.

INMET. Instituto Nacional de Meteorologia – Banco de dados meteorológicos, Ituiutaba – MG e Viçosa – MG. Disponível em: https://bdmep.inmet.gov.br/. Acesso em: 25 set. 2022.

KEHL, L. G. H. Isolamento e caracterização de bactérias promotoras e inibidoras do crescimento vegetal da rizosfera de picão-preto. [s.l.] Universidade Federal de Viçosa, 2021.

KREMER, R. J. Bioherbicides and nanotechnology: Current status and future trends. In: Nano-Biopesticides Today and Future Perspectives. [s.l.] Elsevier, 2019. p. 353–366.

LI, J.; KREMER, R. J. Growth response of weed and crop seedlings to deleterious rhizobacteria. Biological Control, v. 39, n. 1, p. 58–65, Oct. 2006.

MADIGAN, M. T. et al. Microbiologia de Brock. 14. ed. Porto Alegre: Artmed, 2016.

MONTEIRO, L. C. P. et al. Changes in rhizosphere microbial diversity and composition due to NaCl addition to the soil modify the outcome of maize-weed interactions. Applied Soil Ecology, v. 159, p. 103818, Mar. 2021.

NATH, C. P. et al. Challenges and Alternatives of Herbicide-Based Weed Management. Agronomy, v. 14, n. 1, p. 126, 3 Jan. 2024.

PHUKAN, J. et al. Deleterious Rhizobacteria As A Potential Bioherbicide-A Review. International Journal of Agriculture & Environmental Science, v. 8, n. 2, p. 1–5, 25 Apr. 2021.

SAEED, Q. et al. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. International Journal of Molecular Sciences, v. 22, n. 19, p. 10529, 29 Sep. 2021.

SANTOS, J. B.; CURY, J. P. Picão-preto: uma planta daninha especial em solos tropicais. Planta Daninha, v. 29, n. spe, p. 1159–1172, 2011.

WANG, X. et al. Soil properties and agricultural practices shape microbial communities in flooded and rainfed croplands. Applied Soil Ecology, v. 147, p. 103449, Mar. 2020.

Downloads

Publicado

2024-09-01

Como Citar

Silva, L. A. da S., Guimarães , M. J. M. G., Rocha, E. M. F. R., Kehl, L. G. H. K., Costa, M. D. C. ., & Matos, C. da C. de. (2024). Efficacy of rhizobacteria in suppressing weed growth: Eficácia de rizobactérias na supressão do crescimento de plantas daninhas. Concilium, 24(17), 538–550. Recuperado de http://clium.org/index.php/edicoes/article/view/3956

Edição

Seção

Articles