Mining a bioremediation genetic toolbox in the novel environmental bacteria Enterobacter cloacae strain amazonensis
Explorando uma ferramenta genética de biorremediação na nova bactéria ambiental Enterobacter cloacae cepa amazonensis
Palavras-chave:
mercury, environmental bacteria, bioprospectingResumo
The rise of environmental pollution is a threat to planetary and human health. Microbes encode a wide range of enzymes with sophisticated catalytic properties to mitigate toxic chemicals from nature. Bioprospecting environmental bacteria can be a powerful resource for improved enzymes to optimize bioremediation processes. Here, we present a promising genetic toolbox sequenced from a novel multi-resistant bacterial strain isolated from industrial wastewater and sewage-contaminated stream in the city of Manaus, Amazonas, Brazil. We report Enterobacter cloacae amazonensis as a highly heavy-metal resistant and antibiotic multi-resistant strain. Functional and comparative genomics of the E. cloacae strain amazonensis draft genome revealed the annotation of 104 genes encoding proteins involved in the metabolism of copper, cobalt, zinc, cadmium, chromium, mercury and arsenic, as well as a plethora of broad-spectrum resistant genes. As a proof of concept, we characterized a plasmid mobile element from the amazonensis strain, pEN_Amazonensis, in the model biotechnological workhorse E. coli, leading to the robust acquisition of mercury and antibiotic resistance. Here, we highlighted the potential of bioprospecting genetic novelty from environmental bacteria through comparative genomics, paving the way for a genetic toolbox for bioremediation processes.
Downloads
Referências
ABDOLLAHI, S.; GOLCHIN, A.; SHAHRYARI, F. Lead and cadmium-resistant bacterial species isolated from heavy metal-contaminated soils show plant growth-promoting traits. International Microbiology, Zanjan, v. 23, n 4, p. 625-640, jun. 2020. Doi:10.1007/s10123-020-00133-1. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/32533267/.
ASHE K. Concentrações Elevadas de Mercúrio em Humanos de Madre de Dios Peru. PLoS ONE, Stanford, V.7, n.3, p.1-6, Mar. 2012. Disponivel em: https://doi.org/10.1371/journal.pone.0033305.
ASTOLFI, M.C.T.; CARVALHO, E.B.S.; DE BARROS, A.M. et al. Draft Genome Sequence of the Novel Enterobacter cloacae Strain amazonensis, a Highly Heavy Metal-Resistant Bacterium from a Contaminated Stream in Amazonas, Brazil. Genome Announc, Manaus, v. 6, n. 22, p. 450, mai. 2018. DOI: 10.1128/genomeA.00450-18. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/29853502/.
AZEVEDO-SILVA, C. E.; ALMEIDA, R.; CARVALHO, D.P. et al. Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian Amazon. Environmental Research, Manaus, v. 151, p. 286-296, jun. 2016. DOI: 10.1016/j.envres.2016.07.035. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/27517756/.
AZIZ, R.K.; BARTELS, D.; BEST, A.A. et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics, Rio de Janeiro, v. 9, n. 75. Fev. 2008. DOI: 10.1186/1471-2164-9-75. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/18261238/
BARKAY, T.; MILLER, S.M.; SUMMERS, A.O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, New Brunswick, v. 27, n. 2-3, p. 355-384. Jun. 2003. DOI: 10.1016/S0168-6445(03)00046-9. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/12829275/.
BETTY H. OLSON, JOHN N. LESTER, SANDY M. CAYLESS, SIMON FORD, Distribution of mercury resistance determinants in bacterial communities of river sediments,Water Research, New Brunswick, v. 23, n. 10, p. 1209-1217, Out. 1989. DOI: 10.1016/S0168-6445(03)00046-9. Disponivel em: https://doi.org/10.1016/0043-1354(89)90183-8.
BOYD, E.S.; BARKAY, T. The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine. Frontiers in Microbiology, Bozeman, v.3, n. 349, p. 1-13, Out. 2012. Doi: 10.3389/fmicb.2012.00349. Disponivel em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3466566/pdf/fmicb-03-00349.pdf.
CHEN, J.; LI, J.; ZHANG, H. et al. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China. Frontiers in Microbiology, Taiyuan, v. 10, n. 1916, p. 1-12, ago. 1916. DOI: 10.3389/fmicb.2019.01916. Disponivel em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6710345/pdf/fmicb-10-01916.pdf
PAL, C.; BENGTSSON-PALME, J.; KRISTIANSSON, E.; LARSSON, D.G.J. (2015) Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, Taiyuan, v. 16, n. 964, p. 1-12. agosto, 2019. Doi: 10.3389/fmicb.2019.01916. eCollection 2019. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/31481945/.
CHIHOMVU, P.; STEGMANN, P.; PILLAY, M. Characterization and Structure Prediction of Partial Length Protein Sequences of pcoA , pcoR and chrB Genes from Heavy Metal Resistant Bacteria from the Klip River, South Africa. International Journal of Molecular Sciences, Vanderbijlpark, v. 16, n. 4, p. 7352-7374. Março, 2015. Doi:10.3390/ijms16047352. Disponivel em: https://www.mdpi.com/journal/ijms.
HU, N.; ZHAO, B. Key genes involved in heavy-metal resistance in Pseudomonas putida CD2. FEMS Microbiology Letters, Wuhan, v. 267, n. 1, p. 17-22, fev. 2007. Doi: 10.1111/j.1574-6968.2006.00505.x. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/17166231/.
IRAWATI, W.; TAHYA, C. Y. Copper Removal by Enterobacter cloacae strain IrSuk1, Enterobacter cloacae strain IrSuk4a, and Serratia nematodiphila strain IrSuk13 Isolated from Sukolilo River-Indonesia. IOP Conference Series: Materials Science and Engineering, Punjab, v. 1053, n. 1, p. 012038, fev. 2021. Doi: 10.1007/s00284-023-03194-3. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/36745203/.
JANSSEN, P.J.; VAN HOUDT, R.; MOORS, H. et al. The complete genome sequence of Cupriavidus metallidurans Strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One, Upton, v. 5, n. 5, p. 1-33. Mai. 2010. Doi: 10.1371/journal.pone.0010433. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/20463976/.
JOHNSON, H.; CHO, H.; CHOUDHARY, M. Bacterial Heavy Metal Resistance Genes and Bioremediation Potential. Computational Molecular Bioscience, Huntsville, v. 9, n.1, p. 1-12. Mar. 2019. DOI:10.4236/cmb.2019.91001. Disponivel em: https://www.scirp.org/journal/paperinformation?paperid=90664.
LIEBERT, C.A.; HALL, R.M.; SUMMERS, A.O. Transposon Tn21, Flagship of the Floating Genome. Microbiology and Molecular Biology Reviews, Athens, v. 63, n. 3, p. 507-522, set. 1999. DOI: 10.1128/MMBR.63.3.507-522.1999. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/10477306/.
LIN, C.-C., YEE, N., AND BARKAY, T. “Microbial transformations in the mercury cycle,” in Environmental Chemistry and Toxicology of Mercury, eds C. Liu, C. Yong and N. O’driscoll (Hoboken, NJ: JohnWiley & Sons, Inc.), New Brunswick, 155–191, nov. 2012. DOI: https://doi.org/10.1002/9781118146644.ch5. Disponivel em: https://scholarship.libraries.rutgers.edu/esploro/outputs/991031666219604646
MARTINS, V.V.; ZANETTI, M.O.B.; PITONDO-SILVA, A.; STEHLING, E.G. Aquatic environments polluted with antibiotics and heavy metals: A human health hazard. Environmental Science and Pollution Research, Ribeirão Preto, v. 21, n. 9, p. 5873-5878, jun. 2014. DOI 10.1007/s11356-014-2509-4. Disponivel em: file:///C:/Users/dinan/Downloads/s11356-014-2509-4.pdf.
MISHRA S. RAM NARESH BHARAGAVA; NANDKISHOR MORE;ASHUTOSH YADAV; SURABHI ZAINITH; SUJATA MANI; PANKAJ CHOWDHARY. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. Em: SOBTI R., ARORA N., KOTHARI R. (eds) Environmental Biotechnology, Amman, Vol.9 No.12, p. 100-117, Dez, 2021. DOI: 10.4236/gep.2021.912007. Disponivel em: https://doi.org/10.1007/978-981-10-7284-0_5.
MONCHY, S., VALLAEYS, T., BOSSUS A, MERGEAY M. Metal transport ATPase genes from Cupriavidus metallidurans CH34: a transcriptomic approach. Int J Environ Anal Chem, v. 86, n. 9, p. 677- 692, ago. 2006. DOI:10.1080/03067310600583824. Disponivel em: file:///C:/Users/dinan/Downloads/ArticleATPases.pdf
MORAES, W.A.; NAHUM, C.A.; MELO, J.D.G.; DE OLIVEIRA, I.S. Analysis of physico- chemical parameters of waters of the micro basin of the igarapé of the forty in the city of Manaus. Journal of Engineering and Technology for Industrial Applications. ITEGAM-JETIA, Manaus. n. 4, v.14, p. 102-110, jun. 2018. DOI: https://dx.doi.org/10.5935/2447-0228.20180039. Disponivel em: https://itegam-jetia.org/journal/index.php/jetia/article/view/36/19.
NASCIMENTO A.M.; CHARTONE-SOUZA E. OPERON mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genetics and Molecular Research, Belo Horizonte, v. 2, n. 1, p. 92-101. Mar. 2003. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/12917805/.
NIES, D.H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, Halle/Saale, v. 27, n. 2-3, p. 313-339, Jun. 2003. Doi.org/10.1016/S0168-6445(03)00048-2. Disponivel em: https://academic.oup.com/femsre/article/27/2-3/313/615199.
OKEREAFOR, U.; MAKHATHA, M.; MEKUTO, L. et al. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health. International Journal of Environmental Research and Public Health, Johannesburg, v. 17, n. 7, mar. 2020. Doi: 10.3390/ijerph17072204. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/32218329/
PUROHIT, H. J., TIKARIHA, H., AND KALIA, V. C. “Current scenario on application of computational tools in biological systems,” in Soft Computing for Biological Systems, eds H. J. PUROHIT, V. C. KALIA, AND M. R. Prabhakar (Springer), Singapore, p.1-12, fev. 2018. https://doi.org/10.1007/978-981-10-7455-4_1.
REDONDO-SALVO, S.; FERNÁNDEZ-LÓPEZ, R.; RUIZ, R. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nature Communications, Santander, v. 11, n. 3602, p. 1-13, Jul. 2020. DOI:10.1038/s41467-020-17278-2. Disponivel em: https://www.nature.com/articles/s41467-020-17278-2.pdf.
ROSS, W.; PARK, S.J.; SUMMERS, A. Genetic Analysis of Transcriptional Activation and Repression in the Tn21 mer operon. Journal of Bacteriology, Athens v. 171, n.7, p. 4009-4018. Jul. 1989. doi: 10.1128/jb.171.7.4009-4018.1989. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/2661542/
SANTANA, G.P. Sediment-distributed metal from the Manaus Industrial District (MID) Region (AM-Brazil). Journal of Chemical Engineering and Chemistry, manaus, v. 1, n. 2, p. 55-64, 2015. Doi:10.18540/2446941601022015055. Disponivel em: https://periodicos.ufv.br/jcec/article/view/2446941601022015055/pdf
VIANA, P.A.B.; CARVALHO, E.B.S.; DO NASCIMENTO, W.M. ET AL. Genomic Annotation Analysis Software – Ganas: A Tool For Genomic Annotation Analysis. Brazilian Journal of Development, Salvador, v.6, n. 11, p. 89125-89134. 2015.
VON NETZER, F., GRANITSIOTIS, M. S., SZALAY, A. R., AND LUEDERS, T. (2018). “Next-generation sequencing of functional marker genes for anaerobic degraders of petroleum hydrocarbons in contaminated environments,” in Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology, ed. M. Boll (Cham: Springer), Seattle, p. 1–20. Doi:10.1007/978-3-319-33598-8_15-1. Disponivel em: https://link.springer.com/referenceworkentry/10.1007/978-3-319-50391-2_15
VON ROZYCKI, T.; NIES, D.H. Cupriavidus metallidurans: Evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek, Halle, v. 96, n. 2, p. 115-139, ago. 2009. Doi: 10.1007/s10482-008-9284-5. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/18830684/
VON WINTERSDORFF, C.J.H.; PENDERS, J.; VAN NIEKERK, J.M. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology, Maastricht, v.7, n.173, p.1-10, Fev. 2016. Doi: 10.3389/fmicb.2016.00173. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/26925045/.
WU, C.; LIN, C.; ZHU, X. ET AL. The β-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of enterobacter cloacae. International Journal of Genomics, Wenzhou, v. 2018, dez. 2018. https://doi.org/10.1155/2018/4989602. Disponivel em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6317114/pdf/IJG2018-4989602.pdf.
ZEYAULLAH, M.; ISLAM, B.; ALI, A. Isolation, identification and PCR amplification of merA gene from highly mercury polluted Yamuna river. African Journal of Biotechnology, New Delhi, v. 9, n. 24, p. 3510-3514, jul. 2010. Disponivel em: file:///C:/Users/dinan/Downloads/ajol-file-journals_82_articles_82390_submission_proof_82390-973-197875-1-10-20121019.pdf
ZHANG N-X, GUO Y, LI H, YANG X-Q, GAO C-X, HUI C-Y Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury. PLoS ONE, Houston, v.16, n. 5, p. 1-14, mai. 2021. https://doi.org/10.1371/journal.pone.0252190. Disponivel em: file:///C:/Users/dinan/Downloads/journal.pone.0252190.pdf
ZHANG, Y.; JAEGLÉ, L.; THOMPSON, L. Natural biogeochemical cycle of mercury in a global three-dimensional ocean tracer model. Global Biogeochemical Cycles, Seattle, v. 28, n. 5, p. 553-570, mai. 2014. Disponivel em: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GB004814