Effects of curcumin on cystic fibrosis: a systematic review

Efeitos da curcumina na fibrose cística: uma revisão sistemática

Autores

  • Izabela Zibetti de Albuquerque
  • Lusmaia Damaceno Camargo Costa
  • Patrícia Marques Fortes
  • Guilherme Matos Abe
  • Paulo Sérgio Sucasas da Costa

DOI:

https://doi.org/10.53660/CLM-3539-24L33

Resumo

The evidence that curcumin has restorative effects on the chlorine channels function is contradictory in the literature. This systematic review summarizes of molecular and clinical effects of curcumin related to cystic fibrosis (CF). Three databases were searched, where the outcome was the maturation, transport, expression and functionality of cystic fibrosis trasmennrane regulator (CFTR). Were included studies in vitro and in vivo that compared curcumin supplementation with other bioactive compounds or placebo. Of the 19 studies included, 18 were in vitro and 1 was a randomized clinical trial, with low-moderate risk of bias. Curcumin seems to be related to genetic mutations that lead to a defect in the opening of the chloride and sodium channel, allowing the repair of the functionality of this protein. The effect in inducing CFTR maturation and the expression of its function on the cell surface, are conflicting. The use of curcumin in CF patients is incipient and does not allow clinical inferences. PROSPERO CRD42021229294.

Downloads

Não há dados estatísticos.

Referências

BERGER, A. L.; RANDAK, C. O.; OSTEDGAARD, L. S.; KARP, P. H.; VERMEER, D. W. et al. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity. The Journal of Biological Chemistry, Baltimore, v. 280, n. 7, p. 5221-5226, 2005. https://doi: 10.1074/jbc.M412972200.

BERKERS, G.; VAN DER MEER, R.; VAN MOURIK, P.; VONK, A. M.; KRUISSELBRINK, E. et al. Clinical effects of the three CFTR potentiator treatments curcumin, genistein and ivacaftor in patients with the CFTR-S1251N gating mutation. Journal of Cystic Fibrosis, Amsterdam, v. 19, n. 6, p. 955-961, 2020. https://doi: 10.1016/j.jcf.2020.04.014.

BERNARD, K. et al. Curcumin cross-links cystic fibrosis transmembrane conductance regulator (CFTR) polypeptides and potentiates CFTR channel activity by distinct mechanisms. The Journal of Biological Chemistry, v. 284, n. 45, p. 360754-65, 2009. https://doi: 10.1074/jbc.M109.056010.

CARTIERA, M. S.; FERREIRA, E. C.; CAPUTO, C.; EGAN, M. E.; CAPLAN, M. J.; SALTZMAN, W. M. et al. Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Molecular Pharmaceutics, Washington, v. 7, n. 1, p. 86-93, 2010. https://doi: 10.1021/mp900138a.

CHAUDHARY, N. et al. Curcumin Down-Regulates Toll-Like Receptor-2 Gene Expression and Function in Human Cystic Fibrosis Bronchial Epithelial Cells. Biological & Pharmaceutical Bulletin, v. 42, n. 3, p. 489-495, 2019. https://doi: 10.1248/bpb.b18-00928.

CUTTING, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application. Nature Reviews Genetics, Londres, v. 16, n. 1, p. 45-56, 2015.

DEKKERS, J. F. et al. Potentiator synergy in rectal organoids carrying S1251N, G551D, or F508del CFTR mutations. Journal of Cystic Fibrosis, v. 15, n. 5, p. 568-578, 2016. https://doi: 10.1016/j.jcf.2016.04.007.

DRAGOMIR, A. Curcumin does not stimulate cAMP-mediated chloride transport in cystic fibrosis airway epithelial cells. Biochemical and Biophysical Research Communications, v. 322, n. 2, p. 447-451, 2014. https://doi: 10.1016/j.bbrc.2004.07.146.

EGAN, M. E.; PEARSON, M.; WEINER, S. A.; RAJENDRAN, V.; RUBIN, D. et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science, Nova Iorque, v. 304, n. 5670, p. 600-602, 2004. https:// doi: 10.1126/science.1093941.

FARRELL, P. M.; ROCK, M. J.; BAKER, M. W. The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy. Genes, v. 11, n. 4, p. 401, 2020. https://doi: 10.3390/genes11040401.

GONÇALVES, C. et al. Curcumin/poly(2-methyl-2-oxazoline-b-tetrahydrofuran-b-2-methyl-2-oxazoline) formulation: An improved penetration and biological effect of curcumin in F508del-CFTR cell lines. European Journal of Pharmaceutics and Biopharmaceutics, v. 117, p. 168-181, 2017. https://doi: 10.1016/j.ejpb.2017.04.015.

GRUBB, B. R. et al. SERCA pump inhibitors do not correct biosynthetic arrest of deltaF508 CFTR in cystic fibrosis. American Journal of Respiratory Cell and Molecular Biology, v. 34, n. 3, p. 355-363, 2006.

HARADA, K. et al. Curcumin enhances cystic fibrosis transmembrane regulator

expression by down-regulating calreticulin. Biochemical and Biophysical Research Communications, v. 353, n. 2, p. 351-356, 2007. https://doi: 10.1016/j.bbrc.2006.12.036.

LEWIS, S. J.; GARDNER, M.; HIGGINS, J.; HOLLY, J. M. P.; GAUNT, T. R et al. Developing the WCRF International/University of Bristol Methodology for Identifying and Carrying Out Systematic Reviews of Mechanisms of Exposure-Cancer Associations. Cancer Epidemiology, Biomarkers & Prevention, Philadelphia, v. 26, n. 11, p. 1667-1675, 2017. https://doi: 10.1158/1055-9965.EPI-17-0232.

LIPECKA, J. et al. Rescue of DeltaF508-CFTR (cystic fibrosis transmembrane conductance regulator) by curcumin: involvement of the keratin 18 network. The Journal of Pharmacology and Experimental Therapeutics, v. 317, n. 2, p. 500-505, 2006. https://doi: 10.1124/jpet.105.097667.

LIU, X. et al. Natural Compound Curcumin-a Channel Potentiator Rather Than a Corrector of the Defective Intracellular Processing of ΔF508 Mutant Cystic Fibrosis Transmembrane Conductance Regulator. Chemical Research in Chinese Universities, v. 24, n. 2, p. 200-203, 2008. https:// 10.1016/S1005-9040(08)60041-0.

LOO, T. W.; BARTLETT, M. C.; CLARKE, D. M. Thapsigargin or curcumin does not promote the maturation of processing mutants of the ABC transporters, CFTR, and P-glycoprotein. Biochemical and Biophysical Research Communications, v. 325, n. 2, p. 580-585, 2004. https://doi: 10.1016/j.bbrc.2004.10.070.

MAGRIN, G. L.; STRAUSS, F. J.; BENFATTI, C. A. M.; MAIA, L. C.; GRUBER, R. Effects of Short-Chain Fatty Acids on Human Oral Epithelial Cells and the Potential Impact on Periodontal Disease: A Systematic Review of In Vitro Studies. International Journal of Molecular Sciences, Basel, v. 21, n. 14, p. 1-19, 2020. https://doi: 10.3390/ijms21144895.

NOREZ, C. et al. Maintaining low Ca2+ level in the endoplasmic reticulum restores abnormal endogenous F508del-CFTR trafficking in airway epithelial cells. Traffic, v. 7, n. 5, p. 562-573, 2006. https://doi: 10.1111/j.1600-0854.2006.00409.x.

PAGE, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ Medicine, v. 372, n. 71, 2021. https://doi: 10.1136/bmj.n71.

REN, C. L. et al. Cystic Fibrosis Foundation Pulmonary Guidelines. Use of Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapy in Patients with Cystic Fibrosis. Annals of the American Thoracic Society, v. 15, n. 3, p. 271-280, 2018. https://doi: 10.1513/AnnalsATS.201707-539OT.

SCOTET, V.; L´HOSTIS, C.; FÉREC, C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery. Genes, v. 11, n. 6, p. 589, 2020. https://doi: 10.3390/genes11060589.

SONG, Y. et al. Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models. Journal of Biological and Chemical Sciences, v. 279, n. 39, p. 40629-40633, 2004. https://doi: 10.1074/jbc.M407308200.

TRAN, L.; TAM, D. N. H.; ELSHAFAY, A.; DANG, T.; HIRAYAMA, K et al. Quality assessment tools used in systematic reviews of in vitro studies: a systematic review. BMC Medical Research Methodology, Londres, v. 21, n. 1, p. 1-13, 2021. https://doi.org/10.1186/s12874-021-01295-w.

TUFANARU, C.; MUNN, Z.; AROMATARIS, E.; CAMPBELL, J.; HOPP, L. Chapter 3: Systematic reviews of effectiveness. In: Aromataris E, Munn Z (Editors). Joanna Briggs Institute Reviewer's Manual. The Joanna Briggs Institute, 2017. Available from https://reviewersmanual.joannabriggs.org/.

WANG, W. et al. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. The Journal of Biological Chemistry, v. 282, n. 7, p. 4533-

, 2007. https://doi: 10.1074/jbc.M609942200.

WANG, W. et al. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators. Plos One, v. 11, n. 3, e0152232, 2016. https://doi: 10.1371/journal.pone.0152232.

YU, Y. C. et al. Curcumin and genistein additively potentiate G551D-CFTR. Journal of Cystic Fibrosis, v. 10, n. 4, p. 243-252, 2011. https://doi: 10.1016/j.jcf.2011.03.001.

ZEITLIN, P. Can curcumin cure cystic fibrosis? New England Journal of Medicine, Boston, v. 351, n. 6, p. 606-608, 2004. https://doi: 10.1056/NEJMcibr041584.

Downloads

Publicado

2024-06-01

Como Citar

Albuquerque, I. Z. de ., Costa, L. D. C. ., Fortes, P. M. ., Abe, G. M. ., & Costa, P. S. S. da . (2024). Effects of curcumin on cystic fibrosis: a systematic review: Efeitos da curcumina na fibrose cística: uma revisão sistemática . Concilium, 24(11), 688–711. https://doi.org/10.53660/CLM-3539-24L33

Edição

Seção

Articles