Corrosion under insulation: a rewiew
Corrosão sob isolamento: uma revisão
DOI:
https://doi.org/10.53660/CLM-1763-23L09APalavras-chave:
Corrosion under insulation, CUI, Mechanism CorrosionResumo
Corrosion under insulation (CUI) occurs from electrochemical reactions on the surface of thermally insulated industrial equipment and has water as an electrolyte. CUI generates many costs for companies due to maintenance and can also cause problems to human and environmental integrity. In this work, vast bibliographic research was carried out on corrosion under insulation, in articles published between 1998 and 2022, with the objective of evaluating the CUI in Industry, factors that influence it, corrosion mechanism, non-destructive inspection techniques and techniques that can work as a mitigation for this problem. As a result, it was confirmed that corrosion under insulation is a serious problem for the industry, especially the petrochemical one, as its detection is not so simple and is expensive when done visually. To solve this difficulty in identification and detection, non-destructive tests are used, through various technologies, it is possible to prevent the insulation from being damaged and, in some cases, the inspection can be carried out without stopping the process. In addition, serious situations can be generated due to the non-monitoring of the CUI, such as: Economic, human and environmental integrity impacts.
Downloads
Referências
AHLUWALIA, H. S. Cui: An in-Depth Analysis. Insulation outlook, nov., 2006. Disponível em: <https://insulation.org/io/articles/cui-an-in-depth-analysis/>. Acesso em: 15 ago. 2022.
ANGANI C.S., PARK D.G., KIM C.G., LEELA P., KISHORE M., CHEONG Y. M.. Pulsed Eddy Current Differential Probe To Detect The Defects In A Stainless Steel Pipe. JOURNAL OF APPLIED PHYSICS, vol. 109, no 7, 2011.
AMER, A.; CUNNINGHAM, V.; ALSHEHRI, A.; AL-TAIE, I. Inspection challenges for detecting corrosion under insulation (CUI) in the oil and gas industry. In Proceedings of the 17th Middle East Corrosion Conference and Exhibition (MECC), Al Khobar, Saudi Arabia, 30 September–3 October 2018.
API-RP-581. Inspeção Baseada em Risco Technologies, 2008;
BATISTA, Caio; REBELLO, Mateus; CARMO, Carla Beatriz Fagundes; SANTOS, Ygor; SILVA, Ivan; FARIAS, Cláudia. Emprego da Técnica de PEC na Detecção de Descontinuidades em Equipamentos Sob Isolamento. INTERCORR2016_188.
BERTONCINI, F.; RAUGI, M.; TURCU, F.. Pipeline long-range inspection and monitoring by an innovative magnetic collar for magnetostrictive guided-wave systems. e-Journal Nondestruct. Test, December, p. 1–10 (GWUT–2008– 4), 2008.
BRAY, A.V.; CORLEY, C.J.; FISCHER, R.B.; ROSE, J.L.; QUARRY, M.J. Development of guided wave ultrasonic techniques for detection of corrosion under insulation in metal pipe. In Proceedings of the 1998 ASME Energy Sources Technology Conference, Houston, TX, USA, 2–4 February 1998; pp. 1–3.
BURLEIGH, Douglas; SANDERS, H. Infrared Evaluation of Insulated Pipelines to Detect Water that Could Cause Corrosion under Insulation (CUI). Proceedings of SPIE - The International Society for Optical Engineering, 2012, 8354. 21-. 10.1117/12.920011.
CAINES, S.; KHAN, F.; SHIROKOFF, J.; QIU, W. Experimental design to study corrosion under insulation in harsh marine environments. J. Loss Prev. Process Ind., 33, 39–51, 2015.
CAINES, Susan; KHAN, Faisal; SHIROKOFF, John; QIU, Wei. Demonstration of increased corrosion activity for insulated pipe systems using a simplified electrochemical potential noise method. Journal of Loss Prevention in the Process Industries,Vol. 47, pág. 189-202, 2017. Disponível em: (https://www.sciencedirect.com/science/article/pii/S0950423016303904). Acesso em: 25 jan. 2022. DOI: https://doi.org/10.1016/j.jlp.2017.03.012
CALLISTER, W. D. Ciência e Engenharia de Materiais. 5ª Ed, Rio de Janeiro: Editora LTC - Livros Técnicos e Científicos S/A., 2019.
CLARK, M.R.; MCCANN, D.M.; FORDE, M. Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT Int., v. 36, p. 265-275, 2003.
CORDON, M.; HARVEY, D.; KIESEL, M.. Corrosion Under Insulation. Purdue Engineering, Dec. 4, 2017.
Damage mechanisms affecting fixed equipment in the refining industry. API Recommended Practice 571. 2. ed. Apr. 2011.
DNV-RP-G101 Practice. Risk-based inspection of offshore topsides static mechanical equipment. Hovic, Norway: DET NORSKE VERITAS, 2010.
ELTAI, E.; ALKHALIFA, K.; AL-RAYASHIi, A.; MAHDI, E.; HAMOUDA, A.M.S. Investigating the corrosion under insulation (CUI) on steel pipe exposed to Arabian gulf sea water drops. Key Eng. Mater. 2016, 689, 148–153.
ELTAI, Elsadig O.; MUSHARAVATI, Faray; MAHDI, El-sadig. Severity of corrosion under insulation (CUI) to structures and strategies to detect it. Corrosion Reviews, vol. 37, no. 6, 2019, pp. 553-564.
ERICKSON, TH; DASH, LC; MURALI, JJ; AYERS, R. Predicting The Progression Of Wetness And Corrosion Under Insulation Damage In Aboveground Pipelines. In Proceedings of the Corrosion, San Antonio, TX, EUA, 2010.
FIGUEIREDO, C. A. S.. Avaliação de Ligações em Madeira em Estruturas de Coberturas Antigas por Técnica Termográfica. Dissertação de Mestrado- Universidade Federal de Minas Gerais, UFMG, Belo Horizonte/MG, 2016. Disponível em: <http://hdl.handle.net/1843/MMMD-AMPPJV>.
FILHO, R. F. P.. Estudo de um sistema de frenagem eletromagnética empregando correntes parasitas. 267 pág. Tese de Doutorado. Pós graduação em Engenharia Elétrica e Computação. Universidade Federal do Rio Grande do Norte, Natal, RN, 2014.
FITZGERALD, B.J.; Winnik, S.. A strategy for preventing corrosion under insulation on pipelines in the petrochemical industry. Journal Protective Coatings and Linings, 2005 .
FRUGE, D.; BISHOP, K. Corrosion under Insulation. In Proceedings of the 20th Annual Ethylene Producers Conference, New Orleans, LA, USA, 7–10 Apr. 2008.
GALVAGNI, A.; CAWLWY, P.; LOWE, M.. Monitoring of Corrosion in Pipelines Using Guided Waves and Permanently Installed Transducers. 2012.
GEARY, W.; PARROTT, R. Two corrosion under insulation case studies. Loss Prev. Bull., 250, 2–6, 2016
GENTIL, V. Corrosão. 7° Ed. Rio de Janeiro, RJ. LTC Editora S.A., 345 p., 2022.
GILMOUR, S. CSB to Pursue Full Investigation of August 6 Fire at Chevron Refinery in Richmond, California. 2012. Disponível em: <https://www.csb.gov/csb-to-pursue-full-investigation-of-august-6-fire-at-chevron-refinery-in-richmond-california/>. Acesso em: 8 dez 2021.
GRINZATO, E.; VAVILOV, V.; BISON, P.G.; MARINETTI, S. . Hidden corrosion detection in thick metallic components by transient IR thermography. Infrared Phys. Technol., 49 (3 Spec. Iss.) (2007), pp. 234-238.
HARALDSEN, K. Corrosion under insulation –testing of protective coating systems at high temperature. Paper no 10022, NACE Corrosion 2010.
HERNANDEZ, J.; FOULIARD, Q.; VO, K.; SEETHA, R. Detection of corrosion under insulation on aerospace structures via pulsed eddy current thermography. Aerospace Science and Technology, Vol. 121, 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1270963821008270#br0370>. Acesso em: 15 Jun 2022.
HE, Y.; GAO, B.; SOPHIAN, A.; YANG, R. Active Thermography and Eddy Current Excited Thermography, in Transient Electromagnetic-Thermal Nondestructive Testing. Y. He and Butterworth-Heinemann, Eds., pp. 93–121, 2017.
HE, Y.unze; TIAN, Guiyun; CHENG, Liang; ZHANG, Hong; JACKSON, Paul. Parameters influence in steel corrosion evaluation using PEC thermography. Proceedings of 2011 17th International Conference on Automation and Computing, ICAC 2011, September (2011), pp. 255-260.
HE, Y.; TIAN, G.; PAN, M.; CHEN, D.; ZHANG, H.. An investigation into eddy current pulsed thermography for detection of corrosion blister. Corros. Sci., v. 78 , pp. 1-6, 2014.
HE, Y.; PAN, M.; LUO, F.. Defect characterisation based on heat diffusion using induction thermography testing Review of Scientific Instruments.v. 83 2012.
HE, Y.; LUO, F.; PAN, M.C.; HU, X.C.;LIU, B.; GAO, J.. Defect edge identification with rectangular pulsed eddy current sensor based on transient response signals. NDT & E International, Vol. 43, no 5, 409–415, 2010.
HE, Y.; TIAN, G.; ZHANG, H.; ALAMIN, M.; SIMM, A.; JACKSON, P.. Steel Corrosion Characterization Using Pulsed Eddy Current Systems. IEEE SENSORS JOURNAL, vol. 12, no. 6, 2012.
HOFFMAN, A. Moisture as a cause of CUI. Corros. Mater. 2017, 42, 46–47.
HOUBEN, J.; FITZGERALD, B.; WINNIK, S.; CHUSTZ, K.; SURKEIN, M. Deployment of CUI prevention strategies and TSA implementation in projects. Corrosion 2012, USA.
HONARVAR, F ; VARVANI-FARAHANI, A. J. U.. A Review of ultrasonic testing applications in additive manufacturing: Defect evaluation material characterization, and process control. Ultrasonics, vol. 108, p. 106227, 2020.
JAVAHERDASHTI, R..Corrosion under Insulation (CUI): A review of essential knowledge and practice. Journal Of Materials Science e Surface Engineering. Cannington, 10 jun. 2014. p. 36-42.
JONES, R. E.; SIMONETTI, F.; LOWE, M. J. S.; BRADLEY, I. P..Use of microwaves for the detection of water as a cause of corrosion under insulation. Journal of Nondestructive Evaluation, vol. 31, no. 1, pp. 65–76, 2012.
KANT, R.; CHAUHAN, P. S.; BHATT, G.; BHATTACHARYA, S. .Corrosion monitoring and control in aircraft: a review. Sensors for Automotive and Aerospace Applications, S. Bhattacharya, A. K. Agarwal, O. Prakash, and S. Singh, Eds., pp. 39–53, Singapore, Springer Singapore, 2019.
KISHORE, M.B; PARK, D.G ; ANGANI, C.S; LEE, D.H. Characterization Of Pulsed Eddy Current Signals To Discriminate Cladding Change Over Wall Thinning Of Ferromagnetic Pipe. Materials Today: Proceedings, Volume 5, Issue 12, Part 1, 2018, Pages 25843-25849, ISSN 2214-7853. DOI: https://doi.org/10.1016/j.matpr.2018.06.577.
KO, C. H. G.; VARNEY, J.; THOMPSON, N.; MOGHISSI, O. International measures of prevention, application, economics of corrosion technologies study. NACE Impact Rep. 2016.
KORB L. J.; OLSON, D. L. Metals Handbook Volume 13 - Corrosion. 1992.
MARROIG, M. C.; SOUZA, F. V. V.; MOTA, R. O.; QUINTELA, J. P.; MARGARIT, I. C. P.. Corrosão Associada a Isolamento Térmico de Dutos. 2° Congresso Brasileiro de P&D em Petróleo e Gás, Rio de Janeiro, Brasil.
MAINIER, F. B. Material do curso Corrosão e Inibidores. In: Instituto Brasileiro de Petróleo. Rio de Janeiro, Brasil, 2006.
MALDAGUE ,Xavier P.V. . Introduction to NDT by active infrared thermography.
Mater. Eval., 60 (9) (2002), pp. 1060-1073.
MARGRET, M.; MENAKA, M.; SUBRAMANIAN, V.; BASKARAN, R.; VENKATRAMAN, B.. Non-destructive inspection of hidden corrosion through Compton backscattering technique. Radiation Physics and Chemistry, vol. 152, pp. 158-164, 2018.
MOHSIN K., MOKHTAR A., TSE P. A fuzzy logic method: Predicting corrosion under insulation of piping systems with modeling of CUI 3D surfaces. International Journal of Pressure Vessels and Piping, 2019.
NACE Standard SP0198; Control of Corrosion under Thermal Insulation and FireProofing Materials—A Systems Approach. NACE: Houston, TX, USA, 2017.
NACE Standard RP0198; The Control of Corrosion Under Thermal Insulation and Fireproofing Materials—A Systems Approach. NACE: Houston, TX, USA, 1998.
NACE Standard RP0198; The Control of Corrosion Under Thermal Insulation and Fireproofing Materials—A Systems Approach. NACE: Houston, TX, USA, 2004
NACE Standard RP0198; The Control of Corrosion Under Thermal Insulation and Fireproofing Materials—A Systems Approach. NACE: Houston, TX, USA, 2010.
NETO, J. M. O. Estudo da Viabilidade da Termografia para a Detecção de Falhas por Contato em Engrenagens Cilíndricas de Dentes Retos. Programa de Pós-Graduação em engenharia mecânica. Universidade Federal de Campina Grande, Campina Grande/ PB, 2019. Disponível em: <http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/3215>..
NGUYEN, T. M.; VU, D. V. . “NDT application for detection of corrosion under insulation in Vietnam”. Nuclear Science and Technology, [S. l.], v. 11, n. 1, p. 48-54, 2021. DOI: 10.53747/jnst.v11i1.131. Disponível em: http://jnst.vn/index.php/nst/article/view/131. Acesso em: 5 mar. 2021.
PICON, C. A.; FERNANDES, F. A. P.; FILHO, G. T.; RODRIGUES, C. A. D.; CASTELETTI, L. C.. Study of pitting corrosion mechanism of supermartensitic stainless steels microalloyed with Nb and Ti in sea water. REM: R. Esc. Minas, Ouro Preto, pg. 065-069, 2010.
POJTANABUNTOENG, T.; EHSANI, H.; KINSELLA, B.; BRAMELD, M.. Comparison of Insulation Materials and Their Roles on Corrosion under Insulation. In Proceedings of the Corrosion 2017, Nova Orleans, LA, EUA, 2017.
RACHMAN, A., RATNAYAK. RMC Machine learning approach to risk-based inspection screening assessment. Reliable. Eng. System Saf. 2019 , vol. 185 , pag. 518-532, 2019.
REINER, L.. Development of a New Corrosion Inhibitor dor Corrosion Under Insulation at Elevated Temperatures. NACE INTERNACIONAL, 15835 Park Ten Place. Houston, Texas 77084, p. 1-10, 2020.
RODRÌGUEZ, Fernando de Jésus López. DETECÇÃO DE DEFEITOS EM MATERIAIS CERÂMICOS USANDO TERMOGRAFIA. Dissertação de mestrado- Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Mecânica, Florianópolis, 2010. Disponível em: <http://repositorio.ufsc.br/xmlui/handle/123456789/94002>.
SOPHIAN, A.; TIAN, G.; MENGBAO, F. Pulsed Eddy Non-destructive Tenting and Evaluation: A Review. Chinese Mechanical Engineering Society and Springer, Verlag Berlin, Heidelberg, 2017, Pages 500-514. DOI: 10.1007/s10033-017-0122-4.
SWIFT M., Corrosion Under Insulation – Spread Of Corrosion Assessment For Insulation Systems In A High Humidity Environment With Cycling Process Temperatures. A test conducted by the world renowned corrosion institute InnCoa’,2018. Disponível em;https://local.armacell.com/fileadmin/cms/engineeredystems/downloads/en/White_Papers/CUI_II_Tech_Paper_layout_EN_201807_a_web.pdf >. Acesso em: 16 fev. 2022.
SWIFT, M.; CHMIELARSKI, J., Corrosion Under Insulation: A Holistic Approach To Insulation System Design To Reduce Risk Of Cui On Industrial Piping. Armacell, 2019. Disponível em: < https://local.armacell.com/en/energy/problems-we-solve/corrosion-under-insulation-CUI/CUI-fundamentals/ >. Acesso em: 09 mar. 2022.
TIAN, G. Y., SOPHIA, A.. Defect classification using a new feature for pulsed eddy current sensors. NDT&E International, v. 38, 77–82, 2005.
TIAN, Y. G.; HE,Y.; ADEWALE, I.; SIMM, A. Research on spectral response of pulsed eddy current and NDE applications. Sensors and Actuators A: Physical. Vol. 189, pag 313-320, 2013.
VENKATARAMAN, B.; RAJ, B Performance parameterst hermal imaging systems. Insight, 2003.
WANG, Y.;DI, X.; CHEN, J.; SHE, L.; PAN, H.; ZHAO, B.; CHE, R. Multi-dimensional C@NiCo-LDHs@Ni aerogel: Structural and componential engineering towards efficient microwave absorption, anti-corrosion and thermal-insulation. Carbon, Vol. 191, 2022. Disponível: <https://www.sciencedirect.com/science/article/pii/S0008622322000926>. Acesso: 27 set 2022.
WIGGEN, F.; JUSTNES, M.; ESPELAND, S. Risk Based Management of Corrosion Under Insulation. In Proceedings of the SPE International Oilfield Corrosion Conference and Exhibition, Virtual, 16–17, 2021.
WILDS N., Corrosion under insulation. Energy Trends in Oil and Gas Corrosion Research and Technologies, Chapter 17. Duxford, UK: Woodhead Publishing, 2017: 409-429;
WU R., ZHANG H., YANG R., CHEN W., CHEN G.. Nondestructive testing for corrosion evaluation of metal under coating. Hindawai Journal of Sensorns, Vol. 1, 2021.
ZEEMANN, A. Corrosão em Juntas Soldadas. Infosolda, 2003. Acesso em: 25 jun. 2022.
ZHANG, H.; XU, L.; WU, R.; SIMM. Sweep frequency microwave NDT for subsurface defect detection in GFRP. Insight-Non-Destructive Testing and Condition Monitoring, vol. 60, no. 3, pp. 123–129, 2018.
ZHU, W.; CAI, X.;YANG, L.; XIA, J.; ZHOU, Y.; PI, Z. . The evolution of pores in thermal barrier coatings under volcanic ash corrosion using X-ray computed tomography. Surface and Coatings Technology, vol. 357, pp. 372–378, 2020.