Partial characterization of a bacteriocin-like inhibitory substance produced by Streptococcus equinus C6I9, a bovine rumen isolate.
Caracterizaçao parcial de uma substancia inibitória tipo bacteriocina produzida por Streptococcus equinus C6I9, um isolado do rumen bovino
DOI:
https://doi.org/10.53660/CLM-1661-23I24Palavras-chave:
Rumen, Listeria monocytogenes, Antimicrobial activityResumo
The present study aimed to evaluate the production and the factors that influence the antimicrobial activity of a bacteriocin-like inhibitory substance (BLIS) produced by Streptococcus equinus C6I9, a bovine rumen isolate. The antagonist activity was evaluated by the spot-on-lawn assay. Antimicrobial activity of the crude extracts obtained using NaCl acidic solution (pH 2, 100 mM) was evaluated along the bacterial growth and in growth medium containing different carbon and nitrogen sources, by agar diffusion method. Crude extract was evaluated regarding temperature stability, storage conditions, and pH sensitivity. S. equinus C619 inhibited both Gram-positive and Gram-negative strains. The crude extract was sensitive to proteinase K, and showed great stability to different temperatures and pH (2 to 12). The presence of meat extract (1.5 g/L) and sucrose (8 g/L) resulted in higher production of BLIS by S. equinus C6I9. The BLIS molecular mass was determined as approximately 3.5 kDa. The results obtained in this study evidenced the production of a broad spectrum activity, thermo- and pH stable BLIS by the ruminal isolate S. equinus C6I9, important features for its biotechnological application.
Downloads
Referências
ABBASILIASI, S.; RAMANAN, R. N.; IBRAHIM, T. A. T.; MUSTAFA, S.; MOHAMAD, R.; DAUD, H. H. M.; ARIFFA, B. Effect of médium composition and culture condition on the production of bacteriocin-like inhibitory substances (BLIS) by Lactobacillus paracasei LA07, a strain isolated from Budu. Biotechnology & Biotechnological Equipment, v. 25, n. 4, p. 2652-2657, 2011.
ABBASILIASI, S.; TAN, J. S.; IBRAHIM, T. A. T.; BASHOKOUH, F.; RAMAKRISHNAN, N. R.; MUSTAFA, S.; ARIFF, A. B. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Advances, v. 7, p. 29395-29420, 2017.
ALDARHAMI, A.; FELEK, A.; SHARMA, V.; UPTON, M. Purification and characterization of nisin P produced by a strain of Streptococcus gallolyticus. Journal of Medical Microbiology, v. 69, p. 605–616, 2020.
ARBULU, S.; LOHANS, C. T.; BELKUM, M. J. V.; CINTAS, L. M.; HERRANZ, C.; VEDERAS, J. C.; HERNÁNDEZ, P. E. Solution structure of enterocin HF, an antilisterial bacteriocin produced by Enterococcus faecium M3K31. Journal of Agricultural and Food Chemistry, v. 63, p. 10689-10695, 2015.
BHUNIA, A. K.; JOHNSON, M. C.; RAY, B. Direct detection of anantimicrobial peptide of Pediococcus acidilactici in sodium dodecylsulphate-polyacrylamide gel electrophoresis. Journal of Industrial Microbiology, v. 2, p. 319–322, 1987.
BOOTH, S. J.; JOHNSON, J. L.; WILKINNS, T. D. Bacteriocin production by strains of Bacteroides isolated from human feces and the role of theses strains in the bacterial ecology of the colon. Antimicrobial Agents and Chemotherapy, v. 11, n. 4, p. 718–724, 1977.
BRITTON, H. T. S.; ROBINSON, R. A. Universal buffer solutions and the dissociation constant of veronal. Journal of the Chemical Society, v. 458, p. 1456-1462, 1931.
CARVALHO, A. A. T.; MANTOVANI, H. C.; PAIVA, A. D.; MELO, M. R. (2009) The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5. Journal of Applied Microbiology, v. 107, n. 1, p. 339-347.
CHAKCHOUK-MTIBAA, A.; ELLEUCH, L.; SMAOUI, S.; NAJAH, S.; SELLEM, I.; ABDELKAFI, S.; MELLOULI, L. An antilisterial bacteriocin BacFL31 produced by Enterococcus faecium FL31 with a novel structure containing hydroxyproline residues. Anaerobe, v. 27, p. 1–6, 2014.
CHEN, H.; HOOVER, D. G. Bacteriocins and their food applications. Comprehensive Reviews in Food Science and Food Safety, v. 2, p. 82–100, 2003.
CHRISTOPHERS, M.; HENG, L.; HENG, N. Nisin E, a new nisin variant produced by Streptococcus equinus MDC1. Applied Sciences, v. 13, n. 2, p. 1186, 2023.
COTTER, P. D.; HILL, C.; ROSS, R.P. Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, v. 3, p. 777–788, 2005.
DARBANDI, A.; ASADI, A.; MAHDIZADE ARI, M.; OHADI, E.; TALEBI, M.; HALAJ ZADEH, M.; DARB EMAMIE, A.; GHANAVATI, R.; KAKANJ, M. Bacteriocins: properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, v. 36, p. e24093, 2022.
GARCIA-GUTIERREZ, E.; O’CONNOR, P. M.; SAALBACH, G.; WALSH, C. J.; HEGARTY, J. W.; GUINANE, C. M.; MAYER, M. J.; NARBAD, A.; COTTER, P. D. First evidence of production of the lantibiotic nisin P. Science Reports, v. 10, article number 3738, 2020.
GARSA, A. K.; CHOUDHURY, P. K.; PUNIYA, A. K.; DHEWA, T.; MALIK, R. K.; TOMAR, S. K. Bovicins: the Bacteriocins of Streptococci and their potential in methane mitigation. Probiotics and Antimicrobial Proteins, v. 4, p. 1403-1413, 2020.
GARSA, A. K.; KUMARIYA, R.; SOOD, S. K.; KUMAR, A.; KAPILA, S. Bacteriocin production and different strategies for their recovery and purification. Probiotics and Antimicrobial Proteins, v. 6, n. 1, p. 47-58, 2014.
GEORGALAKI, M. D.; VAN DEN BERGHE, E.; KRITIKOS, D.; DEVREESE, B.; VAN BEEUMEN, J.; KALANTZOPOULOS, G.; DE VUYST, L.; TSAKALIDOU, E. Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus aca-dc 198. Applied and Environmental Microbiology, v. 68, n. 12, p. 5891-5903, 2002.
HIMENO, K.; ROSENGREN, K. J.; INOUE, T.; PEREZ, R. H.; COLGRAVE, M. L.; LEE, H. S.; CHAN, L. Y.; HENRIQUES, S. T.; FUJITA, K.; ISHIBASHI, N.; ZENDO, T.; WILAIPUN, P.; NAKAYAMA, J.; LEELAWATCHARAMAS V.; JIKUYA, H.; CRAIK, D. J.; SONOMOTO, K. Identification, characterization, and three-dimensional structure of the novel circular bacteriocin, enterocin NKR-5-3B, from Enterococcus faecium. Biochemistry, v. 54, n. 31, p. 4863-4876, 2015.
HOOVER, D. H. Minimally processed fruits and vegetables: reducing microbial load by nonthermal physical treatments. Food Technology, v. 51, n. 6, p. 66-71, 1997.
HUNGATE, R. E. The rumen microbial ecosystem. Annual Review of Ecology and Systematics, v. 6, p. 39- 66, 1975.
KALMOKOFF, M. L.; CYR, T. D.; HEFFORD, M. A.; WHITFORD, M. F.; TEATHER, R. M. Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrosolvens AR10: characterization of the gene and peptide. Canadian Journal of Microbiology, v. 49, n. 12, p. 763–773, 2003.
KAMRA, D. N. Rumen microbial ecosystem. Current Science, v. 89, n. 1, p. 124-113, 2005.
KISIDAYOVÁ, S.; LAUKOVÁ, A.; JALC, D. Comparison of nisin and monensin effects on ciliate and selected bacterial populations in artificial rumen. Folia Microbiologica, v. 54, n. 6, p. 527-532, 2009.
LASAGNO, M.; NAVARRO, M. L. A.; MOLIVA, M.; REINOSO, E. Screening of bacteriocin associated genes of Streptococcus uberis strains. Heliyon, v. 5, n. 9, p. e02393, 2019.
LAWRENCE, G. W.; GARCIA-GUTIERREZ, E.; WALSH, C. J.; O’CONNOR, P. M.; BEGLEY, M.; COTTER, P. D.; GUINANE, C. M. Nisin G is a novel nisin variant produced by a gut-derived Streptococcus salivarius. BioRxivn, preprint doi: https://doi.org/10.1101/2022.02.15.480493, 2022.
LEWUS, C. B.; MONTVILLE, T. J. Detection of bacteriocins produced by lactic acid bacteria. Journal of Microbiological Methods, v. 13, p. 145–150, 1991.
MANTOVANI, H. C.; HU, H.; WOROBO, R. W.; RUSSELL, J. B. Bovicin HC5, a bacteriocin from Streptpcpccus bovis HC5. Microbiology, v.148, n.11, p. 3347-3352, 2002.
MANTOVANI, H. C.; KAM, D. K.; HA, J. K; RUSSELL, J. B. The antibacterial activity and sensitivity of Streptococcus bovis strains isolated from the rumen of cattle. FEMS Microbiology Ecology, v.37, n.3, p. 223-229, 2001.
MULDERS, J. W. M.; BOERRIGTER, I. J.; ROLLEMA, H. S.; SIEZEN, R. J.; de VOS, W. M. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. European Journal of Biochemistry, v. 201, p. 581–584, 1991.
DE OLIVEIRA, I. M. F.; SANTOS, F. G.; OYAMA, L. B.; MOREIRA, S. M.; DIAS, R. G.; HUWS, S. A.; CREEVEY, C. J.; MANTOVANI, H. C. Whole-genome sequencing and comparative genomic analysis of antimicrobial producing Streptococcus lutetiensis from the rumen. Microorganisms, v. 10, n. 3, article number 551, 2022.
ORTOLANI, M. B.; MORAES, P. M.; PERIN, L. M.; VIÇOSA, G. N.; CARVALHO, K. G.; SILVA JUNIOR, A.; NERO, L. A. Molecular identification of naturally occurring bacteriocinogenic and bacteriocinogenic-like lactic acid bacteria in raw milk and soft cheese. Journal of Dairy Science, v. 93, v. 7, p. 2880–2886, 2010.
PRUDÊNCIO, C. V.; SANTOS, M.T.; VANETTI, M. C. D. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. Journal of Food Science and Technology, v. 52, p. 5408-5417, 2015.
RASHID, M. H.; TOGO, K.; UEDA, M.; MIYAMOTO, T. Characterization of bacteriocin produced by Streptococcus bovis J2 40-2 isolated from traditional fermented milk 'Dahi'. Animal Science Journal, v. 80, n. 1, p. 70-78, 2009.
RIBEIRO-RIBAS, R. N.; VIEIRA, M.A.R.; APOLONIO, C.A., MAGALHAES, P.P.; OLIVEIRA, J.S.; FARIAS, L.M. Purification and partial characterization of a bacteriocin produced by an oral Fusobacterium nucleatum isolated. Journal of Applied Microbiology, v. 7, p. 145-152, 2009.
RODRIGUEZ, E.; GONZALEZ, B.; GAYA, P.; NUNEZ, M.; MEDINA, M. Diversity of bacteriocins produced by lactic acid bacteria isolated from raw milk. International Dairy Journal, v. 10, p. 7–15, 2000.
RUSSELL, J. B.; STROBEL, H. J. Mini-Review: The effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, v. 55, n. 1, p. 1–6, 1989.
SABINO, Y. N. V.; FOCHAT, R. C.; LIMA, J. C. F.; RIBEIRO, M. T.; ARCURI, P. B.; CARNEIRO, J. C.; MACHADO, M. A.; REIS, D. R. L.; FERREIRA-MACHADO, A. B.; HUNGARO, H. M.; RIBEIRO, J. B.; PAIVA, A. D. Antibacterial activity and lantibiotic post-translational modification genes in Streptococcus spp. isolated from ruminal fluid. Annals of Microbiology, v. 69, p. 131–138, 2019.
SEVILLANO, E.; PEÑA, N.; LAFUENTE, I.; CINTAS, L. M.; MUÑOZ-ATIENZA, E.; HERNÁNDEZ, P. E; BORRERO, J. Nisin S, a novel nisin variant produced by Ligilactobacillus salivarius P1CEA3. International Journal of Molecular Science, v. 24, p. 1–20, 2023.
SCHÄGGER, H.; VON JAGOW, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, v. 166, p. 368-379, 1987.
SOLTIS, M. P.; MOOREY, S. E.; EGERT-MCLEAN, A. M.; VOY, B. H.; SHEPHERD, E. A.; MYER, P. R. Rumen biogeographical regions and microbiome variation. Microorganisms, v. 11, n. 3, article number 747, 2023.
DE SOUSA, B. L.; AZEVEDO, A. C.; OLIVEIRA, I. M. F.; BENTO, C. B. P.; SANTANA, M. F.; BAZZOLLI, D. M. S.; MANTOVANI, H. C. PCR screening reveals abundance of bovicin-like bacteriocins among ruminal Streptococcus spp. isolated from beef and dairy cattle. Journal of Applied Microbiology, v. 131, p. 1695-1709, 2021.
SUGRUE, I.; HILL, D.; O’CONNOR, P. M.; DAY, L.; STANTON, C.; HILL, C.; ROSS, R. P. Nisin E is a novel nisin variant produced by multiple Streptococcus equinus strains. Microorganisms, v. 11, n. 2, article number 427, 2023.
TODOROV, S.D. Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control, v. 21, n. 7, p. 1011-1021, 2010.
TURNER, J. W.; JORDAN, H. V. Bacteriocin–like activity within the genus Actinomyces. Journal of Dental Research, v. 60, n. 6, p. 1000–1007, 1981.
WANG, H. T.; CHEN, I. H.; HSU, J. T. Production and characterization of a bacteriocin from ruminal bacterium Ruminococcus albus 7. Bioscience Biotechnology Biochemistry, v. 76, n. 1, p. 34–41, 2012.
WATANABE, A.; KAWADA-MATSUO, M.; LE, M. N.; HISATSUNE, J.; OOGAI, Y.; NAKANO, Y.; NAKATA, M.; MIYAWAKI, S.; SUGAI, M.; KOMATSUZAWA, H. Comprehensive analysis of bacteriocins in Streptococcus mutans. Scientific Reports, v. 11, article number 12963, 2021.
WHITFORD, M. F.; MCPHERSON, M. A.; FORSTER, R. J.; TEATHER, R. M. Identification of bacteriocin-like inhibitors from rumen Streptococcus spp. and isolation and characterization of bovicin 255. Applied and Environmental Microbiology, v.67, n. 2, p. 569-574, 2001.
XIAO, H.; CHEN, X.; CHEN, M.; TANG, S.; ZHAO, X.; HUAN, L. Bovicin HJ50, a novel lantibiotic produced by Streptococcus bovis HJ50. Microbiology, v. 150, n. 1, p. 103-108, 2004.
YANG, E.; FAN, L.; YAN, J.; JIANG, Y.; DOUCETTE, C.; FILLMORE, S.; WALKER, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic latic acid bacteria. AMB Express, v. 8, n. 10, p. 1-14, 2018.
ZALAN, Z.; NEMETH, E.; BARATH, A.; HALASZ, A. Influence of growth medium in hydrogen peroxide and bacteriocin production of Lactobacillus strains. Food Technology and Biotechnology, v. 43, n. 3, p. 219-225, 2005.