Dóris Chatbot: Personal assistant to help indicate a medical specialty
Chatbot Dóris: Assistente pessoal para auxiliar na indicação de especialidade médica
Palavras-chave:
Chatbot, Health, Specialty, PatientResumo
Conversational interfaces have gained visibility due to recent technological advances in the use of Artificial Intelligence. In the health area, this type of interface can be very useful for applications that directly interact with the patient, therefore, simulating contact with a health agent. In addition, many patients, when having certain symptoms, usually make a partial self-diagnosis, without a clinical basis, and make an appointment with a specialist doctor, without first asking the opinion of a general practitioner. In this context, the objective of the research was to develop a chatbot platform in the health area, using the agent Dóris, with the functionality of pre-medical consultation to indicate the most appropriate medical specialty for patients with cough. The platform was developed using IBM Watson for natural language processing together with an inference engine for decision making.
Downloads
Referências
ARAÚJO, C. A. A. Bibliometria: evolução histórica e questões atuais. Em Questão, Porto Alegre, v. 12, n. 1, p. 11–32, 2006.
BRUNA, M. H. V. Tosse. Drauzio Varella, 2011. Disponível em: https://drauziovarella.uol.com.br/doencas-e-sintomas/tosse/. Acessado em: abril, 2020.
COLBY, K. M. Comments on human-computer con-versation. In: Wilks, Y. (ed.), Machine Conversations. The Springer International Series in Engineering and Computer Science. Springer, Boston, MA, Vol. 511. 1999.
COSSUL, D.; FROZZA, R.; FAGUNDES, B.J.; FERREIRA, G.; KIPPER, L.M.; WITCZAK, M.V.C. Evolução do agente pedagógico emocional Dóris em um ambiente virtual de aprendizagem. Editora Poisson. (Org.). Gestão da Produção em Foco. 1ªed. Belo Horizonte: Poisson, Vol. 24, p. 28-38. 2018.
DENECKE, K.; HOCHREUTENER, S. L.; POPEL, A.; MAY, R. Self-Anamnesis with a Conversational User Interface: Concept and Usability Study. Methods of Information in Medicine, Vol. 57, No. 5-6, p. 243-252. 2018.
DENECKE, K.; VAAHEESAN S.; ARULNATHAN A. A Mental Health Chatbot for Regulating Emotions (SERMO) - Concept and Usability Test. IEEE Transactions on Emerging Topics in Computing, Vol. 1, No. 1, p. 1-1. 2020.
FRANKENTHAL, R. MINDMINERS – Entenda a escala Likert e como aplicá-la em sua pesquisa, 2017. Disponível em: https://mindminers.com/blog/entenda-o-que-e-escalalikert/. Acessado em: dezembro de 2020.
GIL, A. C. Como elaborar projetos de pesquisa. 3 ed. São Paulo: Atlas, 1991.
LIDDY, E. D. Natural Language Processing. Encyclopedia of Library and Information Science. 2ªed. New York: Marcel Decker, 2003, p. 2126-2136
NADARZYNSKI, T.; MILES, O.; COWIE, A.; RIDGE, D. Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. Digital Health, Vol. 5, No. 1, p. 1-12. 2019.
SHINYA, V. Watson Assistant: Como criar o seu chatbot usando Skills e Assistants. 2018. Disponível em: https://medium.com/ibmdeveloperbr/watson-assistant-como-criar-o-seu-chatbot-usando-skills-e-assistants-755b4677984b. Acessado em: maio de 2020.
VALTOLINA, S.; BARRICELLI, B.R.; DI GAETANO, S. Communicability of traditional interfaces VS chatbots in healthcare and smart home domains. Behaviour & Information Technology. Vol. 39, No. 1, p. 108-132. 2019.
ZWASS, V. Expert system. Encyclopedia Britannica, 2016. Disponível em: https://www.britannica.com/technology/expert-system. Acessado em: novembro de 2019.